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Abstract. Currently known sequent systems for propositional linear time
temporal logic either include a cut rule in some form or an infinitary

rule, which is a rule with infinitely many premises. We strengthen the
infinitary rule to require only a finite number of premises and show that
this modification preserves soundness. This way we obtain a finitary
cut-free sequent system which almost fulfills the subformula property.
However, the number of premises of the finitary rule is exponential in
the size of its conclusion and the soundness proof relies on the small
model property.

1 Introduction

Linear time temporal logics are used for specification and verification of reactive
systems. A recent overview of the development of this subject and a collection
of references can be found in Lichtenstein and Pnueli [9]. Several approaches
to the design of deductive systems and decision procedures have been proposed
for this logic. The paper just mentioned gives a tableau-based decision proce-
dure as well as a Hilbert-style axiom system and a proof of its completeness.
A resolution-based approach is given by Fisher et al. in [1], an approach based
on a translation into Büchi automata is given by Sistla et al. in [13], and a
game-theoretic approach can be found in Lange and Stirling in [8].

In this paper, we study cut-free sequent systems for propositional linear temporal
logic. A cut-free sequent system is a valuable tool that helps us understand a
logic. It is typically much easier to carry out proof search in a cut-free sequent
system than in a Hilbert-style axiom system. Proof search in the sequent calculus
is typically easy to understand because of the clear logical reading of the inference
rules. We feel that the same cannot be said, for example, for a procedure that
computes strongly connected components in a graph, which is part of tableau
procedures.

Several sequent systems have already been designed for linear temporal logic,
but they all have their problems. Either they are infinitary, i.e. they contain a
rule with an infinite number of premises such as

` Γ, A ` Γ, #A ` Γ, ##A . . .
ω

` Γ, 2A
,
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or they are not truly cut-free, that is they contain a rule such as

` Γ, B ` B̄, #B ` B̄, A
2

` Γ, 2A
,

which clearly violates the subformula property since B is an arbitrary formula.
Kawai [7] and Sza las [14] give systems of the first kind. Gudzhinskas [4], Paech
[10] and Sza las [15] give systems of the second kind. An exception is Pliuškevičius
[11], who gives a finitary and truly cut-free system for a fragment of linear tem-
poral logic with first-order quantifiers. However, this fragment does not include
full propositional linear temporal logic.

Typically, a tableau system closely corresponds to a cut-free sequent system.
Unfortunately this is not true in the case of temporal logics, cf. [3]. Here the
tableau procedure consists of two passes: in the first it constructs a certain graph,
from which it deletes certain strongly connected components in the second pass.
This two-pass nature gets in the way of a correspondence to a sequent system.
Schwendimann gives a one-pass tableau procedure in [12], but it works on a more
intricate data structure than sets of formulas and thus here as well it is hard to
see a correspondence to a sequent system.

Jäger et al. propose using an ω-rule with finitely many premises for the logic
of common knowledge and for a fragment of the modal µ-calculus in [5,6]. Here
we adapt this idea in order to obtain a finitary cut-free sequent system for
linear temporal logic. In the following section we present syntax and semantics
of unary linear temporal logic and also give the proof of the standard canonical
model theorem. In Section 3 we show an infinitary sequent system and prove
completeness of this system by establishing a connection with the tableau graph.
In Section 4, which is the heart of this paper, we give the finitary sequent system
and show that it is equivalent to the infinitary one. In Section 5 we extend this
result to full linear time temporal logic, i.e. we add the connectives until and
release. Some discussion in Section 6 concludes this paper.

2 Preliminaries

Propositions p and their negations p̄ are atoms, with ¯̄p defined to be p. Atoms are
denoted by a, b, c and so on. The formulas of unary LTL, denoted by A, B, C, D
are given by the grammar

A ::= #
na | (A ∨ A) | (A ∧ A) | 3A | 2A ,

where #
n denotes a sequence of n connectives # for some n ≥ 0. A formula of

the form #
na is called elementary, and its intended meaning is that a holds n

steps from now. The intended meaning of 3A is “eventually A will hold” and
that of 2A is “A will always hold”.



Given a formula A, its negation Ā is defined as follows:

#
na = #

nā
A ∨ B = Ā ∧ B̄ 3A = 2Ā

A ∧ B = Ā ∨ B̄ 2A = 3Ā ,

and the next operator applied on A, denoted #A, is defined as follows:

#(A ∨ B) = #A ∨ #B #3A = 3#A
#(A ∧ B) = #A ∧ #B #2A = 2#A

.

A subformula of a formula A is a substring of A that is a formula. In particular,
#

na is a subformula of #
ma if n ≤ m. The size of a formula A is the number

of its subformulas and is denoted by |A|.

A model, denoted by σ, is an ω-sequence of sets of propositions. The element of
the sequence at position i is denoted by σ(i) and σ(0) denotes the first element.

We define the relation |= as follows:

σ, i |= #
np ⇐⇒ p ∈ σ(i + n)

σ, i |= #
np̄ ⇐⇒ p 6∈ σ(i + n)

σ, i |= A ∨ B ⇐⇒ σ, i |= A or σ, i |= B
σ, i |= A ∧ B ⇐⇒ σ, i |= A and σ, i |= B
σ, i |= 3A ⇐⇒ ∃j ≥ i σ, j |= A
σ, i |= 2A ⇐⇒ ∀j ≥ i σ, j |= A
σ |= A ⇐⇒ ∀i σ, i |= A .

A formula A is valid, denoted by |= A, if ∀σ∀i σ, i |= A and it is satisfiable if
∃σ∃i σ, i |= A. The following proposition easily follows from the above definition:

Proposition 1. For all models σ, all i ≥ 0, n ≥ 0 and all formulas A we have the

following equivalences:

σ, i |= A ⇐⇒ σ, i 6|= Ā
σ, i |= #

nA ⇐⇒ σ, i + n |= A .

The closure of A, denoted by cl(A), is the set of all subformulas of A and their
negations. A subset s of cl(A) is saturated if the following conditions are fulfilled:

∀#
na ∈ cl(A) #

na ∈ s =⇒ #
nā 6∈ s

if B ∨ C ∈ s then B ∈ s or C ∈ s
if B ∧ C ∈ s then B ∈ s and C ∈ s
if 2B ∈ s then B ∈ s .

The tableau graph of A, denoted by G(A), has all saturated subsets of cl(A)
as its nodes and there is an edge from a node s to a node t if the following
conditions are fulfilled, where n ≥ 0:

if #
n+1a ∈ s then #

na ∈ t
if 2B ∈ s then 2B ∈ t .



A path through a graph is a sequence of nodes in the graph such that for two
consecutive nodes in the sequence there is an edge from the first to the second.
Paths can be empty and paths can be infinite. A fulfilling path is a path π
through a tableau graph such that for all i ≥ 0 and for all formulas B we have
that

if 3B ∈ π(i) then ∃j ≥ i B ∈ π(j) .

If a path is fulfilling and starts with a node that contains the formula A then it
is fulfilling for A. An infinite path π through a tableau graph induces a model
π̃, which is obtained by dropping all formulas that are not propositions.

The size of a tableau graph G(A), denoted by |G(A)| is its number of nodes.
Since for any formula A we have |cl(A)| ≤ 2 · |A| we also have |G(A)| ≤ 22·|A|.

The main reason for defining the tableau graph is the canonical model theorem
for linear time logic. We adapt it from [9]. The theorem says that instead of
looking for arbitrary models for a formula, we can restrict ourselves to paths in
the finite tableau graph.

Theorem 2.

1. A formula of unary LTL is satisfiable iff there is an infinite fulfilling path

for it in its tableau graph.

2. Let π be an infinite fulfilling path in the tableau graph of A. Then for each

formula B ∈ cl(A) and each i ≥ 0 we have that B ∈ π(i) =⇒ π̃, i |= B.

Proof. To prove the first statement left-to-right, consider a formula A, a model
σ and a natural number i such that σ, i |= A. Define a sequence π as π(j) =
{B ∈ cl(A) | σ, i + j |= B}. It is easy to check that each π(j) is saturated and
that π is an infinite fulfilling path for A. The right-to-left direction of the first
statement follows from the second statement. We prove it by induction on B.
Let B be an elementary formula #

np. Then we have for all i ≥ 0 the following
implications, which easily follow from the definitions:

#
np ∈ π(i) =⇒ p ∈ π(i + n) ⇐⇒ p ∈ π̃(i + n) ⇐⇒ π̃, i |= #

np .

The case of an elementary formula #
np̄ works similarly. The cases of the propo-

sitional connectives are standard. Let B = 3C. We have for all i ≥ 0 that

3C ∈ π(i) =⇒ ∃j ≥ i C ∈ π(j) =⇒ ∃j ≥ i π̃, j |= C ⇐⇒ π̃, i |= 3C ,

where the left implication is due to π being a fulfilling path and the middle
implication is by induction hypothesis. Let B = 2C. We have for all i ≥ 0 that

2C ∈ π(i) =⇒ ∀j ≥ i C ∈ π(j) =⇒ ∀j ≥ i π̃, j |= C ⇐⇒ π̃, i |= 2C ,

where the left implication is due to saturation of the elements of π and the
definition of the tableau graph and the middle implication is by induction hy-
pothesis. ut



` Γ, #
n
a, #

n
ā

` Γ, A ` Γ, B
∧

` Γ, A ∧ B

` Γ, A, B
∨
` Γ, A ∨ B

` Γ, #nA for all n ≥ 0
2

ω

` Γ, 2A

` Γ, #3A, A
3

` Γ, 3A

Fig. 1. An infinitary sequent system LT
ω

3 An Infinitary Sequent System

We use Γ to denote a finite multiset of formulas. An infinitary sequent system
for unary linear temporal logic is shown in Figure 1.

According to our notion of subformula this system does not fulfill the subformula
property. The formula #p, for example, is not a subformula of 3p. However,
the same is true for Gentzen’s system LK [2], where A[x/t] generally is not a
subformula of ∃xA. Our point here is that we have a subformula property modulo
the next connective, which is much better than introducing arbitrary formulas
in the premise.

Soundness and completeness of essentially the same sequent system (but in-
cluding quantifiers) have also been proved e.g. in Pliuškevičius [11]. Our proof is
different in making use of Theorem 2 and thus establishing a connection between
branches in proofs in the sequent system and paths in the tableau graph.

The corresponding formula of a finite multiset of formulas is the disjunction of
all formulas in its underlying set. When no confusion arises, we write Γ both for
the multiset and for its corresponding formula.

Theorem 3. System LT
ω is sound and complete.

Proof. Soundness follows from an easy induction on the proof. To show complete-
ness we devise a proof search strategy that allows to construct a countermodel
from a failed proof search. We build a possibly infinite-depth derivation for the
sequent ` Γ in a root-first fashion: 1) choose an unmarked non-elementary for-
mula in some non-axiomatic leaf and apply the corresponding rule to it. 2) Mark
the formulas produced by the inference rule if they are new. Repeat steps 1)
and 2) until each non-elementary formula in each non-axiomatic leaf is marked.
3) Remove all markings. Repeat the steps above until a fixpoint is reached. If
this process terminates with all leaves axiomatic, then we have a proof. So as-
sume that this process either terminates with a non-axiomatic leaf or does not
terminate. Let Γ ∗ be the union of all sequents on the problematic (i.e. non-
axiomatic or infinite) branch. Define a sequence π of sets of formulas such that
π(i) = {A ∈ cl(Γ ) |#iĀ ∈ Γ ∗}. It is easy to prove that π is a fulfilling path in
G(Γ ). The saturation of each π(i) follows from the axiom, the rules for ∧,∨ and



3. The fact that there is an edge from π(i) to π(i + 1) follows by definition of
π and the 3-rule, and fulfillingness of π follows from the 2

ω-rule. In case π is
finite it is of the form π′s where no formula #B ∈ s and thus there is an edge
from s to itself in G(Γ ). We thus have an infinite fulfilling path π′sssss . . . .

Since for each A ∈ Γ we have Ā ∈ π(0), by Theorem 2 we have a countermodel
for Γ . Since thus a failure of proof search yields a countermodel for Γ proof
search succeeds for a valid Γ . ut

4 A Finitary Sequent System

System LT
<ω is obtained from system LT

ω by replacing the 2
ω-rule by the

following finitary rule:

` Γ, #nA for all n ≤ 24·|Γ∨2A|

2
<ω

` Γ, 2A
.

Since this rule allows to derive the same conclusion as the 2
ω-rule but with fewer

premises, it is not clear that this rule is sound. To see this, we first need a few
definitions.

Definition 4. A path of the form sπs, where s is a node and π is a path, is a
cycle. We say that the path π is properly contained in the cycle sπs. A cycle sπs
in a path π1sπsπ2 is redundant if each node in π occurs in π2. A path is reduced

if it does not contain redundant cycles.

Example 5. Consider the fully connected graph formed by the three nodes s, t, u.
Then the path stu is reduced: it contains no cycle at all. The path stsu is reduced
because its only cycle sts is not redundant. In contrast, both paths ssu and stsut
are not reduced because the first contains the redundant cycle ss and the second
contains the redundant cycle sts.

The notion of redundancy is designed to give us two things: first, removing
redundant cycles preserves the property of being fulfilling:

Lemma 6. If the cycle sπs is redundant in the fulfilling path π1sπsπ2 then π1sπ2

is a fulfilling path.

Second, it gives us an upper bound on the size of reduced paths:

Lemma 7. In a graph of size n the length of each reduced path is smaller than

or equal to
∑n

i=0
i.

Proof. We proceed by induction on n, the case n = 0 is obvious. For the induction
step we argue by contradiction: assume that we have a reduced path π with



|π| >
∑n+1

i=0
i in a graph of size n + 1. Then π = π1sπ2 with |π1| = n + 1 and

|sπ2| >
∑n

i=0
i. Because of its length, π1s contains a cycle and by reducedness

this cycle properly contains at least one node. Again because of reducedness, sπ2

does not contain this node, so it is a reduced path in a graph of size n, which
contradicts the induction hypothesis. ut

Theorem 8. The 2
<ω-rule is sound.

Proof. Assuming the validity of all the premises of the 2
<ω-rule we prove the

validity of its conclusion. We have |= Γ ∨2A ⇐⇒ Γ̄ ∧3Ā is unsatisfiable ⇐⇒
there is no infinite fulfilling path for Γ̄ ∧ 3Ā in G(Γ̄ ∧ 3Ā).

Assume for the sake of contradiction that there is such an infinite fulfilling path.
Then it is of the form

π = s π1 t π2 , with Γ̄ ∧ 3Ā ∈ s and Ā ∈ t .

Using Lemma 6, we remove all redundant cycles in sπ1t to obtain a fulfilling
path sπ′

1t. Let i be the position of t in that path. By Lemma 7 we have that
i ≤ 24·|Γ∨2A|. Let σ be the model induced by the path s π′

1 t π2. By Theorem 2
we have that σ, 0 |= Γ̄ and that σ, i |= Ā. Thus σ 6|= Γ ∨#

iA, which contradicts
the validity of some premise of the 2

<ω-rule. ut

Theorem 9. System LT
ω and system LT

<ω are equivalent.

Proof. Clearly, given a proof of a sequent in LT
ω we get a proof of the same

sequent in LT
<ω simply by removing branches from instances of the 2

ω-rule.
The other direction follows from completeness of LT

ω and soundness of LT
<ω,

which follows from Theorem 8. ut

5 Until and Release

To consider full linear temporal logic we define formulas of the language LTL
by the grammar

A ::= #
na | (A ∨ A) | (A ∧ A) | (A U A) | (A R A) ,

where U is the connective until and R is the connective release. We replace the
definitions of negation and next for the connectives 3 and 2 as follows:

A U B = Ā R B̄ #(A U B) = (#A) U (#B)

A R B = Ā U B̄ #(A R B) = (#A) R (#B) ,

and the definitions of the relation |= as follows:

σ, i |= A U B ⇐⇒ ∃j ≥ i (σ, j |= B and ∀i ≤ k < j σ, k |= A)
σ, i |= A R B ⇐⇒ ∀j ≥ i (σ, j |= B or ∃i ≤ k < j σ, k |= A) .



The unary connectives 3 and 2 are definable using the binary ones. It is easy
to check that 3A is equivalent to >U A, where > = a∨ ā for some atom a, and
dually so for the connective 2.

The condition for the connective 2 in the definition of a saturated subset is
replaced by

if B U C ∈ s then B ∈ s or C ∈ s
if B R C ∈ s then C ∈ s ,

and in the definition of the tableau graph the condition is replaced by

if B U C ∈ s and C 6∈ s then B U C ∈ t
if B R C ∈ s and B 6∈ s then B R C ∈ t .

A fulfilling path is a path π through G(A) such that for all i ≥ 0 and for all
formulas B U C we have that

if B U C ∈ π(i) then ∃j ≥ i C ∈ π(j) .

Theorem 10.

1. A formula of LTL is satisfiable iff there is an infinite fulfilling path for it in

its tableau graph.
2. Let π be an infinite fulfilling path in the tableau graph of A. Then for each

formula B ∈ cl(A) and each i ≥ 0 we have that B ∈ π(i) =⇒ π̃, i |= B.

Proof. We copy the proof of Theorem 2 except for the two inductive cases for 3

and 2, which are replaced as follows:

Let B = C U D. We have for all i ≥ 0 that

C U D ∈ π(i) =⇒ ∃j ≥ i (D ∈ π(j) ∧ ∀i ≤ k < j C ∈ π(k))
=⇒ ∃j ≥ i (π̃, j |= D ∧ ∀i ≤ k < j π̃, k |= C)
⇐⇒ π̃, i |= C U D ,

for the first implication the existence of a j that satisfies the first conjunct follows
from fulfillingness of the path π. Take the least j that satisfies the first conjunct.
Then for all π(k) with i ≤ k < j we have D 6∈ π(k). Then by definition of
the tableau graph C U D ∈ π(k) and by saturation C ∈ π(k). Thus the second
conjunct is fulfilled. The second implication is by induction hypothesis.

Let B = C R D. We have for all i ≥ 0 that

C R D ∈ π(i) =⇒ ∀j ≥ i (D ∈ π(j) ∨ ∃i ≤ k < j C ∈ π(k))
=⇒ ∀j ≥ i (π̃, j |= D ∨ ∃i ≤ k < j π̃, k |= C)
⇐⇒ π̃, i |= C R D ,

where the second implication is by induction hypothesis. For the first implication,
take some j with j ≥ i that does not satisfy the second disjunct. Then for all
π(k) with i ≤ k < j by definition of the tableau graph we have C R D ∈ π(k)
and also C R D ∈ π(j). By saturation we have D ∈ π(j). Thus all such j fulfill
the first disjunct. ut



` Γ, #
n
a, #

n
ā

` Γ, A ` Γ, B
∧

` Γ, A ∧ B

` Γ, A, B
∨
` Γ, A ∨ B

` Γ, B ` Γ, #(A R B), #0A, . . . , #n−1A, #nB for all n ≥ 1
R

ω

` Γ, A R B

` Γ, A, B ` Γ, #(A U B), B
U

` Γ, A U B

Fig. 2. An infinitary sequent system LT
ω
U ,R

An infinitary sequent system for full LTL is shown in Figure 2.

Theorem 11. System LT
ω
U ,R is sound and complete.

Proof. The proof works like that of Theorem 3. ut

We now obtain a finitary system LT
<ω
U ,R from system LT

ω
U ,R by replacing the

Rω-rule by the following finitary rule:

` Γ, B ` Γ, #(A R B), #0A, . . . , #n−1A,#nB for all n ≤ 24·|Γ∨ARB|

R
ω

` Γ, A R B
.

Just as in the unary case, we have to prove that this rule is sound:

Theorem 12. The R<ω-rule is sound.

Proof. Assuming the validity of all the premises of the R<ω-rule we prove the
validity of its conclusion. We have |= Γ ∨ARB ⇐⇒ Γ̄ ∧ ĀU B̄ is unsatisfiable
⇐⇒ there is no infinite fulfilling path for Γ̄ ∧ Ā U B̄ in its tableau graph.

Assume for the sake of contradiction that there is such an infinite fulfilling path.
Then either B̄ is in the first state of this path, which contradicts the validity of
the left-most premise, or the path is of the form

π = s π1 t π2 , with Γ̄ ∧ Ā U B̄ ∈ s and B̄ ∈ t ,

such that Ā is in s and in every node of π1. Using Lemma 6, we remove all
redundant cycles in sπ1t to obtain a fulfilling path sπ′

1t. Let i be the position
of t in that path. By Lemma 7 we have that i ≤ 24·|Γ∨ARB|. Let σ be the
model induced by the path s π′

1 t π2. By Theorem 10 we have that σ, 0 |= Γ̄ ,
∀j < i σ, j |= Ā and that σ, i |= B̄. Thus σ 6|= Γ ∨ #

0A ∨ · · · ∨ #
i−1A ∨ #

iB,
which contradicts the validity of some premise of the R<ω-rule. ut



Just like in the unary case we have equivalence of the infinitary and the finitary
system:

Theorem 13. System LT
ω
U ,R and system LT

<ω
U ,R are equivalent.

6 Discussion

We have given sequent systems for unary and for full linear temporal logic, which
are finitary, cut-free and almost satisfy the subformula property. To the best of
our knowledge, these are the first sequent systems for these logics that satisfy
these properties.

There are two problems that we are currently addressing. The first is obtaining
a decision procedure based on the given finitary sequent system. Clearly the
proof search procedure given in the completeness proof immediately gives us a
semi-decision procedure once we replace the infinitary rule by the finitary rule.
It should be possible to extract a countermodel if after some finite number of
steps the proof search has not succeeded.

The second problem is obtaining better bounds on the number of premises of
the 2

<ω,R<ω-rules. While we do not see a way to prevent the exponential, it
seems possible to define a bound in terms of the endsequent of the proof rather
than in terms of the conclusion of the rule.

After that, of course we have to set the bar higher than just asking for finitariness
and the subformula property. Clearly, the 2

<ω,R<ω-rules are problematic: the
exponential number of premises probably spoils uses in interactive proof search.
A sequent system with a constant small number of premises for each rule would
be desirable, and should be a target of future research. Further problems, that
seem challenging and worthwhile to us, are obtaining cut-free systems for more
expressive temporal logics, such as the linear µ-calculus or (larger fragments of)
temporal logic with first-order quantifiers. Obtaining a syntactic cut elimination
procedure is also an interesting direction for future research.
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Thomas Studer for interesting and helpful discussions.

References

1. Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM

Trans. Comput. Logic, 2(1):12–56, 2001.
2. Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing
Co., Amsterdam, 1969.
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