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Abstract We see a systematic set of cut-free axiomatisations for all the basic normal

modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of

deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular

they enjoy a subformula property in the literal sense. No semantic notions are used

inside the proof systems, in particular there is no use of labels. All their rules are

invertible and the rules cut, weakening and contraction are admissible. All systems

admit a straightforward terminating proof search procedure as well as a syntactic cut

elimination procedure.
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1 Introduction

Numerous extensions of the sequent calculus have been proposed in order to give

cut-free axiomatisations of modal logic. They are divided into two classes: labelled

formalisms, which incorporate Kripke semantics in the proof system, and unlabelled

formalisms, which do not. Prominent examples of unlabelled formalisms are the hyper-

sequent calculus [1] and the display calculus [2,20]. These and more can be found in

the survey by Wansing [21]. A recent account of labelled sequent systems which also

includes more references can be found in Negri [13].

The labelled approach seems to have become more prominent and according to

several criteria has been more successful than the unlabelled approaches. It allows to

capture a wide class of modal logics and does so systematically. In many important

cases it yields systems which are natural and easy to use, which have good structural

properties like contraction-admissibility and invertibility of all rules, and which give

rise to decision procedures.
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Labelled systems are formulated in a hybrid language which not only contains

modalities but also variables and an accessibility relation. There are some concerns

about incorporating the semantics into the syntax of a proof system in this way. Avron

discusses them in [1], for example. However, even without these concerns, it still is an

interesting question whether we can formulate certain proof systems for modal logic

within the modal language or whether we have to move to the hybrid language. Thus

my goal here is to develop proof systems with the same good properties of Negri’s

labelled systems but to do so within the modal language.

This paper is part of a research effort started by Hein, Stewart and Stouppa [10,

16,17]. To make the property of “not using labels” a bit more precise we call a proof

system pure if each sequent has an obvious corresponding formula. Ordinary sequent

systems for modal logic are clearly pure: just read the comma on the left as conjunction,

the comma on the right as disjunction, and the turnstile as implication. Hypersequents

are also pure. For a labelled sequent, on the other hand, it is generally not clear what

its corresponding modal formula should be.

Hein, Stewart and Stouppa use the calculus of structures to give pure systems for

modal logics. This formalism was developed by Guglielmi [8] and was further studied

by the author [5,3] and by Straßburger[9,18]. It is based on deep inference, which is

the ability to apply rules deep inside of a formula. So far the calculus of structures has

captured essentially those modal logics which can also be captured using the sequent

calculus or hypersequents. In particular that does not include B and K5. It turns out

that not all the depth of the calculus of structures is needed for our purpose and so

we use proof systems based on nested sequents which are intermediate between the

calculus of structures and the sequent calculus. Essentially the same notion of sequent

has been used before by Bull [6] to give a proof system for a fragment of propositional

dynamic logic and by Kashima [11] to give proof systems for certain tense logics. In the

current work we will see deep sequent systems for all the normal logics formed from the

axioms d, t, b, 4, 5, so the modal logics shown in Figure 1. In particular this includes

B and K5. All proof systems can be easily embedded into corresponding systems in

the calculus of structures, as we will see, so this answers questions from Stewart and

Stouppa [16].

The plan of the paper is as follows: after some preliminaries I present deep sequent

systems and prove invertibility of rules and admissibility of contraction. Then I show

that they are sound and complete for the respective Kripke semantics. The complete-

ness proof constructs a countermodel from the failure of a terminating proof search

procedure. After that we see the syntactic cut elimination procedure in the course

of which we find some admissible structural rules, which are interesting in their own

right. These modal structural rules might lead to modular systems, as we see in the

next section. Some discussion of related formalisms ends this paper. This paper is an

extended and corrected version of [4]. In addition to [4] I also treat seriality, give a

syntactic cut elimination procedure, give systems based on the modal structural rules

and make explicit the connection to the calculus of structures.

2 The Sequent Systems

Formulas. Propositions p and their negations p̄ are atoms, with ¯̄p defined to be p.

Formulas, denoted by A,B, C, D are given by the grammar

A ::= p | p̄ | (A ∨A) | (A ∧ A) | 3A | 2A .
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◦
S4

◦
S5

◦
T

◦
TB

◦
D4

◦
D45

◦
D5

◦D ◦DB

◦
K4

◦
K45

◦
KB5

◦
K5

◦
K

◦
KB

Fig. 1 The modal “cube” [7]

k: (no condition) > 2(A ∨ B) ⊃ (2A ∨ 3B)
d: serial ∀s∃t. s → t 2A ⊃ 3A
t: reflexive ∀s. s → s A ⊃ 3A
b: symmetric ∀st. s → t ⊃ t → s A ⊃ 23A
4: transitive ∀stu. s → t ∧ t → u ⊃ s → u 2A ⊃ 22A
5: euclidean ∀stu. s → t ∧ s → u ⊃ t → u 3A ⊃ 23A

Fig. 2 Frame conditions and modal axioms

Given a formula A, its negation Ā is defined as usual using the De Morgan laws,

A ⊃ B is defined as Ā ∨ B and ⊥ and > are defined as p ∧ p̄ and p ∨ p̄, respectively,

for some proposition p.

Nested sequents. A nested sequent is a finite multiset of formulas and boxed se-

quents. A boxed sequent is an expression [Γ ] where Γ is a deep sequent. In the fol-

lowing a sequent is a nested sequent. Sequents are denoted by Γ, ∆, Λ, Π,Σ. As usual,

sequents are written without any curly braces and the comma in the expression Γ, ∆

is multiset union. A sequent is always of the form

A1, . . . , Am, [∆1], . . . , [∆n] .

The corresponding formula of the above sequent is ⊥ if m = n = 0 and otherwise

A1 ∨ · · · ∨Am ∨2(D1) ∨ · · · ∨ 2(Dn) ,

where D1 . . . Dn are the corresponding formulas of the sequents ∆1 . . . ∆n. Often we do

not distinguish between a sequent and its corresponding formula, for example a model of

a sequent is a model of its corresponding formula. A sequent Γ has a corresponding tree,

denoted tree(Γ ), whose nodes are marked with multisets of formulas. The corresponding

tree of the above sequent is

{A1, . . . , Am}

tree(∆1) tree(∆2) . . . tree(∆n−1) tree(∆n)

.
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Often we do not distinguish between a sequent and its corresponding tree, for example

the root of a sequent is the root of its corresponding tree.

Sequent contexts. Informally, a context is a sequent with holes. We will mostly

encounter sequents with just one hole. A unary context is a sequent with exactly one

occurrence of the symbol { }, the hole, which does not occur inside formulas. Such

contexts are denoted by Γ{ }, ∆{ }, and so on. The hole is also called the empty

context. The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆. For example,

if Γ{ } = A, [[B], { }] and ∆ = C, [D] then

Γ{∆} = A, [[B], C, [D]] .

The depth of a unary context Γ{ }, denoted depth(Γ{ }) is defined as follows

depth(Γ, { }) = 0

depth(Γ, [∆{ }]) = depth(∆{ }) + 1.

More generally, a context is a sequent with n ≥ 0 occurrences of { }, which do not

occur inside formulas, and which are linearly ordered. The number n is the arity of the

context. A context is either denoted by C or by

Γ { } . . . { }
︸ ︷︷ ︸

n−times

,

if it is of arity n. Given n contexts C1, . . . , Cn the context

Γ{C1} . . . {Cn}

is obtained by replacing the i-th hole in Γ{ } . . . { } by Ci and the i-th element in

the linear order by the linear order given by Ci and doing so simultaneously for all

1 ≤ i ≤ n. Clearly the arity of that context is the sum of the arities of all the Ci’s. If a

Ci is the empty context then it is not shown. For example, if Γ{ }{ } = A, [[B], { }], { }

and ∆{ } = C, [{ }] then

Γ{∆{ }}{ } = A, [[B], C, [{ }]], { } ,

where in all contexts the holes are ordered from left to right as shown.

The sequent systems. Figure 3 shows the set of rules from which we form our

deductive systems. System K is the set of rules {∧,∨, 2, k}. We will look at extensions

of System K with sets of rules X ⊆ {d, t, b, 4, 5}. Each name in X not only designates

a rule name, but also a frame condition and a modal Hilbert-style axiom as shown in

Figure 2.

In the following instance of an inference rule ρ

ρ
Γ1 . . . Γn

∆

we call Γ1 . . . Γn its premises and ∆ its conclusion. A system, denoted by S , is a set

of inference rules. A derivation in a system S is a upward-growing finite tree whose

nodes are labelled with sequents and which is built according to the inference rules

from S . The sequent at the root is the conclusion and the sequents at the leaves are

the premises of the derivation. A proof of a sequent Γ in a system is a derivation in this

system with conclusion Γ and where all premises are instances of the axiom Γ{p, p̄}.
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Γ{p, p̄} ∧
Γ{A} Γ{B}

Γ{A ∧ B}
∨

Γ{A, B}
Γ{A ∨ B}

2
Γ{[A]}
Γ{2A}

k
Γ{3A, [∆,A]}
Γ{3A, [∆]}

d
Γ{3A, [A]}
Γ{3A}

t
Γ{3A, A}
Γ{3A}

b
Γ{[∆,3A], A}
Γ{[∆,3A]}

4
Γ{3A, [∆, 3A]}
Γ{3A, [∆]}

5
Γ{3A}{3A}
Γ{3A}{∅}

depth(Γ{ }{∅}) > 0

Fig. 3 System K+{d,t,b,4,5}

nec
Γ

[Γ ]
wk

Γ{∅}
Γ{∆}

ctr
Γ{∆, ∆}

Γ{∆}

Fig. 4 Necessitation, weakening and contraction

Derivations are denoted by δ and proofs by π. The depth of a derivation δ is denoted

by |δ|. Note that the depth of a derivation, which is a tree, has nothing to do with the

depth of the sequents in it, which are also trees. We write S ` Γ if there is a proof

of Γ in system S . An inference rule ρ is (depth-preserving) admissible for a system S

if for each proof in S ∪ {ρ} there is a proof of in S with the same conclusion (and

with at most the same depth). For each rule ρ there is its inverse, denoted by ρ̄, which

is obtained by exchanging premise and conclusion. The ∧̄-rule allows both Γ{A} and

Γ{B} as conclusions of Γ{A ∧ B}. An inference rule ρ is (depth-preserving) invertible

for a system S if ρ̄ is (depth-preserving) admissible for S .

The rules shown in Figure 4 turn out to be admissible.

Lemma 1 (Admissibility of structural rules, Invertibility) For each system K + X with

X ⊆ {d, t, b, 4, 5} the following hold:

(i) The rules necessitation, weakening and contraction are depth-preserving admissible.

(ii) All its rules are depth-preserving invertible.

Proof The admissibility of necessitation and weakening follows from a routine induction

on the depth of the proof. The same works for the invertibility of the ∧,∨ and 2-rules

in (ii). The inverses of all other rules are just weakenings. For the admissibility of

contraction we also proceed by induction on the depth of the proof tree, using depth-

preserving invertibility of the rules. The cases are easy for the propositional rules and

for the 2, d, t-rules. For the k rule we consider the formula 3A from its conclusion

Γ{3A, [∆]} and its position inside the premise of contraction Λ{Σ, Σ}. We have the

cases 1) 3A is inside Σ or 2) 3A is inside Λ{ }. We have three subcases for case 1:

1.1) [∆] inside Λ{ }, 1.2) [∆] inside Σ, 1.3) Σ, Σ inside [∆]. There are two subcases of

case 2: 2.1) [∆] inside Λ{ } and 2.2) [∆] inside Σ. All cases are either simpler than or
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similar to case 1.2, which is as follows:

Λ′{3A, Σ′, [∆, A],Σ′, [∆]}
k

Λ′{3A, Σ′, [∆],Σ′, [∆]}
ctr

Λ′{3A, Σ′, [∆]}

;
Λ′{3A, Σ′, [∆, A],Σ′, [∆]}

k̄
Λ′{3A, Σ′, [∆,A], Σ′, [∆, A]}

ctr
Λ′{3A, Σ′, [∆,A]}

k
Λ′{3A, Σ′, [∆]}

,

where the instance of k̄ in the proof on the right is removed because it is depth-

preserving admissible and the instance of contraction is removed by the induction

hypothesis. The case for the 4-rule works the same way.

For the b-rule we make a case analysis based on the position of [∆, 3A] from its

conclusion Γ{[∆, 3A]} inside the premise of contraction Λ{Σ, Σ}. We have three cases:

1) [∆, 3A] inside Λ{ }, 2) [∆, 3A] in Σ and 3) Σ, Σ inside [∆, 3A]. Case 3 has two

subcases: either 3A ∈ Σ or not. All cases are trivial except for case 2 where invertibility

of the b-rule is used.

For the 5 rule we make a case analysis based on the positions of the sequent

occurrences 3A and ∅ from its conclusion Γ{3A}{∅} inside the premise of contraction

Λ{Σ, Σ}. We have two cases: 1) ∅ inside Λ{ }, 2) ∅ inside Σ. The first case is trivial,

in the second we have two subcases: 1) 3A inside Λ{ } and 2) 3A inside Σ. Case 2.1

is similar to case 2.2 which is as follows:

Λ{Σ{3A}{∅}, Σ{3A}{3A}}
5

Λ{Σ{3A}{∅}, Σ{3A}{∅}}
ctr

Λ{Σ{3A}{∅}}

;
Λ{Σ{3A}{∅}, Σ{3A}{3A}}

5̄
Λ{Σ{3A}{3A}, Σ{3A}{3A}}

ctr
Λ{Σ{3A}{3A}}

5
Λ{Σ{3A}{∅}}

.

ut

3 Soundness and Completeness

To prove soundness and completeness, we first need some preliminary definitions.

Definition 1 (frames, models, validity) A frame is a pair (S,→) of a nonempty set S of

states and a binary relation → on it. A model M is a triple (S,→, V ) where (S,→)

is a frame and V is a a mapping which assigns a subset of S to each proposition, and

which is called valuation. A model M as given above induces a relation |= between

states and formulas which is defined as usual. In particular we have s |= p iff s ∈ V (p),

s |= p̄ iff s 6∈ V (p), s |= A ∨ B iff s |= A or s |= B, s |= A ∧ B iff s |= A and s |= B,

s |= 3A iff there is a state t such that s → t and t |= A, and s |= 2A iff for all t if

s → t then t |= A. Further, a formula A is valid in a model M, denoted M |= A, if

for all states s of M we have s |= A. A formula A is valid in a frame (S,→), denoted

(S,→) |= A, if for all valuations V we have (S,→, V ) |= A. A formula is valid if it

is valid in all frames. For a subset X ⊆ {d, t, b, 4, 5} we call a frame an X-frame if it

satisfies all the conditions determined by the names in X. A formula is X-valid if it is

valid in all X-frames.
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The 5-rule is requires some care when proving its soundness because it is defined

in terms of a two-hole context. We first show how it is derivable for three rules which,

modulo built-in contraction, are special cases of the 5-rule. The soundness of these

rules is then easy to establish.

Lemma 2 The 5-rule is derivable for {5a, 5b, 5c, ctr}, where 5a,5b,5c are the rules

5a
Γ{[∆], 3A}

Γ{[∆, 3A]}
, 5b

Γ{[∆], [Λ, 3A]}

Γ{[∆, 3A], [Λ]}
, 5c

Γ{[∆, [Λ, 3A]]}

Γ{[∆, 3A, [Λ]]}
.

Proof Seen bottom-up, the 5-rule allows to put a formula 3A which occurs at a node

different from the root into an arbitrary node. We can use contraction to duplicate 3A

and move one copy to the root and also to some child of the root by 5a. By 5b we

can move it to any child of the root and by 5c into any descendant of a child of the

root. ut

Lemma 3 Let X ⊆ {d, t, b, 4, 5}, Γ{ } be a context and A, B be formulas. If the formula

A ⊃ B is X-valid then Γ{A} ⊃ Γ{B} is X-valid.

Proof By induction on the depth of Γ{ }. We use the soundness of some Hilbert-style

axiomatisation of K+X. To show the validity of

(Γ1, [Γ2{A}]) ⊃ (Γ1, [Γ2{B}])

we use the induction hypothesis to get Γ2{A} ⊃ Γ2{B}, necessitation to get 2(Γ2{A} ⊃
Γ2{B}), the k-axiom to get 2(Γ2{A}) ⊃ 2(Γ2{B}), and finally propositional reasoning

to get Γ1, [Γ2{A}] ⊃ Γ1, [Γ2{B}]. ut

Theorem 1 (Soundness) Let Γ, ∆ and Γ1, . . . , Γn be sequents and let X ⊆ {d, t, b, 4, 5}.
Then the following hold:

(i) For any rule ρ ∈ K if ρ
Γ1 . . . Γn

∆
then Γ1 ∧ · · · ∧ Γn ⊃ ∆ is valid.

(ii) For any rule ρ ∈ {d, t, b, 4, 5} if ρ
Γ

∆
then Γ ⊃ ∆ is {ρ}-valid.

(iii) If K + X ` Γ then Γ is X-valid.

Proof The axiom is valid in all frames which follows from an induction on Γ{ } where

necessitation is used in the induction step. Thus (i) and (ii) imply (iii). Most cases

of (i) are trivial, for the ∧-rule it follows from an induction on the context and uses

the implication 2A ∧ 2B ⊃ 2(A ∧ B). Lemma 3 used together with the k-axiom

yields that the premise of the k-rule implies its conclusion. The cases from (ii) for the

{d, t, b, 4}-rules are similar to the k-rule, using the corresponding modal axiom and for

the corresponding frames.

For the soundness of the 5-rule we use Lemma 2 and show soundness of the

rules 5a, 5b, 5c. For 5c we show that a euclidean countermodel for the conclusion is

also a countermodel for the premise, the other cases are similar. A countermodel for

[∆, 3A, [Λ]] has to contain states s → t → u such that t 6|= ∆, u 6|= Λ and v 6|= A for

any v with t → v. We need to show that for any w with u → w we have w 6|= A. By

euclideanness we obtain, in this order: t→ t, u→ t, t→ w. Thus w 6|= A. ut

Completeness. In order to prove completeness, we need some preliminary definitions

which will help us to extract a tree-like Kripke model from a sequent.
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Definition 2 (subtree of a sequent) A sequent ∆ is an immediate subtree of a sequent Γ

if there is a sequent Λ such that Γ = Λ, [∆]. It is a proper subtree if it is an immediate

subtree either of Γ or of a proper subtree of Γ , and it is a subtree if it is either a proper

subtree of Γ or ∆ = Γ . The set of all subtrees of Γ is denoted by st(Γ ). A formula A

is in a sequent Γ if A ∈ Γ and it is inside Γ if there is a subtree ∆ of Γ such that

A ∈ ∆.

Our sequents are based on multisets. We need a way to stop proof search once their

underlying sets remain the same, so we need the following notion:

Definition 3 The set sequent of the sequent

A1, . . . , Am, [∆1], . . . , [∆n]

is the underlying set of

A1, . . . , Am, [Λ1], . . . , [Λn] ,

where Λ1 . . . Λn are the set sequents of ∆1 . . . ∆n. Clearly the set sequent of a given

sequent is again a sequent since a set is a multiset.

We will not directly prove completeness of the systems K + X, but of different,

equivalent systems (K + X)◦ that we define now. For each rule ρ we define a rule ρ◦

which keeps the main formula from the conclusion. For most rules ρ = ρ◦ except for

the following rules:

∧◦
Γ{A ∧B, A} Γ{A ∧B, B}

Γ{A ∧B}
∨◦

Γ{A ∨B, A, B}

Γ{A ∨B}

2
◦ Γ{2A, [A]}

Γ{2A}
where in the conclusion the node of the active formula does not

have a child node which contains A

d
◦ Γ{3A, [A]}

Γ{3A}
where in the conclusion the node of the active formula does not

have a child node.

In addition, each rule ρ◦ carries the proviso that for all of its premises the set sequent is

different from the set sequent of the conclusion. Given a system S ⊆ {∧,∨, 2, k,d, t, b, 4, 5}

the system S◦ is obtained by replacing each rule ρ ∈ S by ρ◦. Systems S and S◦ will

turn out to be equivalent, as we will know after the completeness theorem. For now we

just prove one direction of the equivalence.

Lemma 4 For all systems X ⊆ {d, t, b, 4, 5} and for all sequents Γ we have that (K +

X)◦ ` Γ implies (K + X) ` Γ .

Proof By a standard induction on the proof tree, using contraction and weakening

admissibility for K + X. ut

In order to prove completeness we need some closures of relations.

Definition 4 Let → be a binary relation on a set S. Then ← denotes its inverse, ↔ its

symmetric closure,→+ its transitive closure and→∗ its reflexive-transitive closure. For

X ⊆ {t, b, 4, 5} →X denotes the smallest relation that includes→ and has the properties

in X. The same conventions are used for different arrows that denote relations, such as

⇒, the inverse of which is ⇐, and so on.
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We will see shortly that →X is well-defined. First we need to characterise the

euclidean and the transitive-euclidean closure of a relation.

Definition 5 Let → be a binary relation on a set S and let s, t ∈ S. A euclidean

connection for → from s to t is a nonempty sequence s1 . . . sn of elements of S such

that we have

s← s1 ↔ s2 ↔ · · · ↔ sn → t .

A transitive-euclidean connection is defined likewise but such that

s = s1 ↔ s2 ↔ · · · ↔ sn → t .

We write s→(4)5 t if there is a (transitive-)euclidean connection for → from s to t.

Lemma 5 Let → be a binary relation on a set S. Then the following hold:

(i) For all X ⊆ {t, b, 4, 5} the relation →X is well-defined.

(ii) The relation → ∪ →5 is the least euclidean relation that contains →.

(iii) The relation →45 is the least transitive and euclidean relation that contains →.

Proof (i) is easy to check except for the cases for {5} and {4, 5}, which follow from (ii)

and (iii).

(ii) Euclideanness is easy to check. For leastness we show that any euclidean relation

⇒ that includes → also includes →5. If s →5 t then s⇒5t. We show s⇒5t for a

euclidean connection of length n implies s⇒t by induction on n. Assume there is an

si in the euclidean connection such that si−1⇒si⇐si+1. Then we have two smaller

euclidean connections to which we apply the induction hypothesis and obtain s⇒t by

euclideanness. If there is no such si then the euclidean connection looks as follows:

s = s0⇐s1⇐ . . .⇐sj⇒ . . .⇒sn⇒sn+1 = t ,

and by euclideanness we have sj−1⇒sj+1 and thus removing sj yields a smaller eu-

clidean connection from s to t which by induction hypothesis implies s⇒t.

(iii) Euclideanness and transitivity are easy to check. For leastness we show that

any transitive-euclidean relation ⇒ that includes→ also includes→45. If s→45 t then

s⇒45t. If there is no si in the transitive-euclidean such that si⇐si+1, then s⇒t follows

by transitivity. Otherwise, choose the first such si. We have a euclidean connection from

si to t, thus similarly to (ii) obtain si⇒t and by transitivity s⇒si and s⇒t. ut

Definition 6 Let → be a binary relation on a set S. Its serial closure, denoted →d,

is obtained from → by adding s → s for each s ∈ S which violates seriality. For

X ⊆ {t, b, 4, 5} the relation →X∪{d} is defined as (→X)d.

Lemma 6 Let → be a binary relation on a set S. If → satisfies a frame condition in

{t, b, 4, 5} then →d also satisfies that frame condition.

Proof For reflexivity this is clear since a reflexive relation is its own serial closure. For

symmetry this is clear since only loops are added, which are their own inverses. For

transitivity, assume that we have s →d t and t →d u. If either s = t or t = u then we

have s→d u. So assume s 6= t and t 6= u. Then s→ t and t→ u and by transitivity of

→ we get s→ u and thus s→d u.

For euclideanness, assume that s→d t and s→d u. We need to show that t→d u.

If s = t then we are done, so assume s 6= t which implies s→ t. Since s→d u and since

s does not violate seriality we have s→ u. By euclideanness of → we obtain t→ u and

thus t→d u. ut
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Repeat
(step 1) Keep applying the rules in ((K + X) \ {2, d})◦ as long as possible.
(step 2) Wherever possible, apply the rules in ((K + X) ∩ {2, d})◦ once.

Until each non-axiomatic derivation leaf is finished.

Fig. 5 The algorithm prove(Γ,X)

Definition 7 (cyclic, finished, prove(Γ, X)) A leaf of a sequent is cyclic if there is an

inner node in the sequent that carries the same set of formulas. A node in a sequent

is finished for a system S if no rule from S applies to a formula in this node. A

sequent is finished for a system S if all its nodes are either finished for S or cyclic. We

define a procedure prove(Γ, X), which takes a sequent Γ and a system X ⊆ {d, t, b, 4, 5}

and builds a derivation tree for Γ by applying rules from (K + X)◦ to non-axiomatic

and unfinished derivation leaves in a bottom-up fashion. It is shown in Figure 5. If

prove(Γ, X) terminates and all derivation leaves are axiomatic then it succeeds and if

it terminates and there is a non-axiomatic derivation leaf then it fails.

Definition 8 The size of a sequent is the number of nodes of its corresponding tree.

The set of subformulas of a sequent Γ , denoted sf (Γ ) is the set of all subformulas of

all formulas which are element of some node of the sequent.

Lemma 7 (Termination) For all sets X ⊆ {d, t, b, 4, 5} and for all sequents Γ the proce-

dure prove(Γ, X) terminates after at most 2|sf (Γ )| iterations (of the repeat-until-loop).

Proof Consider a sequence of sequents along a given branch of the derivation starting

from the root. A rule application in step 1 does not create new nodes in the sequent

and causes the set of formulas at some node in the sequent to strictly grow. By the

subformula property only finitely many formulas can occur in a node, so step 1 termi-

nates. If after step 1 there is an unfinished leaf in a sequent then the size of the sequent

strictly grows in step 2. Since there are only 2|sf (Γ )| different sets of formulas that can

occur each unfinished sequent leaf has to be cyclic eventually. ut

The current set of modal rules does not allow a modular completeness result of the

form “if Γ is X-valid then K + X ` Γ”. In particular it is easy to check that we have

Fact 2 For some formula A we have
(i) K + {t, 5} 0 2A ⊃ 22A and

(ii) K + {b, 4} 0 3A ⊃ 23A .

However, while not every combination of modal rules is sound and complete for the

respective set of frames, at least for each set of frames which can be characterised by

our five axioms there is a combination of modal rules which is sound and complete.

Definition 9 Let X ⊆ {d, t, b, 4, 5}. The set X is 45-complete if for ρ ∈ {4, 5} we have

that if all X-frames satisfy ρ then ρ ∈ X.

Both of the sets {t, 5} and {b, 4} are not 45-complete, for example, while both

{t, 4, 5} and {b, 4, 5} are. Our completeness result will hold for 45-complete X.

Theorem 3 (Completeness) For all 45-complete sets X ⊆ {d, t, b, 4, 5} and for all se-

quents Γ the following hold:

(i) If Γ is X-valid then K + X ` Γ .

(ii) If prove(Γ, X) fails then Γ is not X-valid.
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Proof The contrapositive of (i) follows from (ii): if K + X 0 Γ then by Lemma 4 also

(K + X)◦ 0 Γ and thus in particular prove(Γ, X) cannot yield a proof and by Lemma 7

has to fail. For (ii) we define a modelM on an X-frame for which we prove that it is a

countermodel for Γ . Let Γ ∗ be the set sequent of the non-axiomatic finished sequent

obtained. Let Y be the set of all cyclic leaves in Γ ∗. Let S = st(Γ ∗)\Y . Let f : Y → S

be some function which maps a cyclic leaf to a sequent in S whose root carries the

same set of formulas and extend f to st(Γ ∗) by the identity on S. Define a binary

relation → on S such that ∆ → Λ iff either 1) Λ is an immediate subtree of ∆ or 2)

∆ has an immediate subtree Σ ∈ Y and f(Σ) = Λ. Let V (p) = {∆ ∈ S | p̄ ∈ ∆}. Let

M = (S,→X, V ). We prove three claims aboutM, each claim depending on the next.

Since all rules seen top-down preserve countermodels Claim 1 implies thatM 6|= Γ .

Claim 1 For each sequent ∆ ∈ st(Γ ∗) we have thatM, f(∆) 6|= ∆.

By induction on the depth of ∆. For depth zero this follows from Claim 2 and the

fact that a formula is in ∆ iff it is in f(∆). So let

∆ = A1, . . . , Am, [∆1], . . . , [∆n] and n > 0 .

Then f(∆) = ∆. We have M, f(∆) 6|= Ai for all i ≤ m by Claim 2 and M, ∆ 6|= [∆i]

because ∆→ f(∆i) and by induction hypothesis M, f(∆i) 6|= ∆i.

Claim 2 For each sequent ∆ ∈ S and for each formula A ∈ ∆ we have that

M, ∆ 6|= A.

By induction on the depth of A. For atoms it is clear from the definition of M
and since Γ ∗ is not axiomatic. For the propositional connectives it is clear from the

shape of the ∧,∨-rules. If A = 2B then by the 2-rule we have some [Λ] ∈ ∆ with

B ∈ Λ. By induction hypothesis we haveM, Λ 6|= B and thusM, ∆ 6|= 2B. If A = 3B

then by Claim 3 we have B ∈ Λ for all Λ with ∆ →X Λ, and thus M, Λ 6|= B. Thus

M, ∆ 6|= 3B.

Claim 3 For all sequents ∆, Λ ∈ S with ∆→X Λ and for each formula A it holds

that if 3A ∈ ∆ then A ∈ Λ.

We make a case analysis on X. Note that each modal logic has exactly one 45-

complete axiomatisation, with the exception of S5, which has two.

K X = ∅ : By the definition of → there is an immediate subtree of ∆ whose root

node carries the same set of formulas as the root node of Λ. By the k-rule we have A

in (the root node of) all immediate subtrees of ∆.

T X = {t} : ∆→{t} Λ iff ∆→ Λ or ∆ = Λ. In the second case A ∈ Λ follows from

the t-rule.

KB X = {b}: ∆→{b} Λ iff ∆→ Λ or Λ→ ∆. In the second case A ∈ Λ follows by

the b-rule.

K4 X = {4}: ∆→{4} Λ iff there is a sequence

∆ = ∆0 → ∆1 → ∆2 → · · · → ∆n = Λ ,

with n ≥ 1. An induction on i gives us that 3A ∈ ∆i for 0 ≤ i ≤ n by using the 4-rule.

By the k-rule it follows that A ∈ ∆n.

K5 X = {5}: By Lemma 5 we have ∆ →{5} Λ iff ∆ → Λ or there is a euclidean

connection from ∆ to Λ. In the second case there are sequents Π,Σ such that ∆← Π

and Σ → Λ. Thus there is an immediate subtree ∆′ of Π with the same formulas as

∆ and an immediate subtree Λ′ of Σ with the same formulas as Λ. Since 3A ∈ ∆ we

have 3A ∈ ∆′ and since ∆′ 6= Γ ∗ by the 5-rule we have 3A ∈ Σ. Thus by the k-rule

we have A in Λ′ and thus in Λ.
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K45 X = {4, 5}: By Lemma 5 we have ∆→{4,5} Λ iff ∆→ Λ or there is a transitive-

euclidean connection from ∆ to Λ. In the second case there is a sequent Σ such that

Σ → Λ and thus an immediate subtree Λ′ of Σ with the same formulas as Λ. Since

3A ∈ ∆, by the 5- and 4-rules we have 3A in every subtree of Γ ∗ and thus also in Σ,

and by the k-rule we have A in Λ′ and thus in Λ. (It is sufficient to have the 5a-rule

instead of the 5-rule for all X which contain 4.)

KB5 X = {b, 4, 5}: ∆→{b,4,5} Λ iff ∆↔+ Λ. Thus there is a sequent Σ such that

either Σ → Λ or Σ ← Λ. Rule 4, 5 imply that 3A is in every subtree of Γ ∗ and thus in

particular in Σ. We have A ∈ Λ in the first case by the k-rule and in the second case

by the b-rule.

KTB X = {b, t}: ∆→{b,t} Λ iff ∆→ Λ or ∆← Λ or ∆ = Λ. In these cases A ∈ Λ

respectively follows from the k- or b- or t-rule.

S4 X = {t, 4}: ∆ →{t,4} Λ iff ∆ →+ Λ or ∆ = Λ. In the first case A ∈ Λ follows

from the rules 4 and k and in the second case from the t-rule.

S5(1) X = {t, 4, 5}: ∆→{t,4,5} Λ iff ∆↔∗ Λ. We have 3A in all subtrees of Γ ∗ by

the rules 4, 5 and thus also A by the t-rule.

S5(2) X = {d, b, 4, 5}: ∆→{d,b,4,5} Λ iff ∆↔∗ Λ. We have 3A in all subtrees of Γ ∗

by the rules 4, 5 and thus also 3A ∈ Λ. By the d-rule the root of Λ has a child node.

By the 4-rule 3A is in this child node and by the b-rule A ∈ Λ.

KD,KDB,KD4,KD5,KD45 The argument for all these cases is similar to the same

system without d. Take the corresponding X, then ∆→X∪{d} Λ iff ∆→X Λ or (∆ = Λ

and there is no ∆′ with ∆ →X ∆′). In the second case, due to the d-rule, there is no

formula 3A in ∆ and thus our claim is trivially true. ut

By the termination lemma, soundness and part (ii) of the completeness theorem

we get decidability:

Corollary 1 (Decidability) For all X ⊆ {d, t, b, 4, 5} it is decidable whether a sequent is

X-valid.

4 Syntactic Cut Elimination

While cut admissibility is an easy corollary of the completeness theorem, it is still

interesting to provide a nontrivial procedure which removes cuts from a proof. The

existence of a step-by-step cut elimination procedure shows a certain symmetry, a

certain good design of the inference rules. Also, it can serve as a starting point for a

computational interpretation, maybe along the lines of [12].

We now see a cut elimination procedure which follows the lines of the one for system

G3 for first-order predicate logic, see for example [19]. The interesting twist is that the

modalities require some form of multicut, similar to Gentzen’s original procedure, even

though contraction is admissible.

Definition 10 The depth of a formula A, denoted depth(A), is defined as usual:

depth(p) = depth(p̄) = 0

depth(2A) = depth(3A) = depth(A) + 1

depth(A ∧B) = depth(A ∨B) = max(depth(A), depth(B)) + 1 .
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cut
Γ{A} Γ{Ā}

Γ{∅}

Fig. 6 The cut rule

ḋ
Γ{[∅]}
Γ{∅}

ṫ
Γ{[∆]}
Γ{∆}

ḃ
Γ{[∆, [Σ]]}
Γ{Σ, [∆]}

4̇
Γ{[∆]}
Γ{[[∆]]}

5̇
Γ{[∆]}{∅}
Γ{∅}{[∆]}

depth(Γ{ }{[∆]}) > 0

Fig. 7 Modal structural rules

Definition 11 Given an instance of the cut rule as shown in Figure 6, its cut formula is

A and its cut rank is one plus the depth of its cut formula. For r ≥ 0 we define the rule

cutr which is cut with at most rank r. The cut rank of a derivation is the supremum

of the cut ranks of its cuts. A rule is cut-rank (and depth-) preserving admissible for a

system S if for all r ≥ 0 the rule is (depth-preserving) admissible for S + cutr. A rule

is cut-rank (and depth-) preserving invertible for a system S if its inverse is cut-rank

(and depth-) preserving admissible for S .

Definition 12 Let {∆}n denote {∆} . . . {∆}
︸ ︷︷ ︸

n−times

. For Y ⊆ {4, 5} and n ≥ 0 we define the

rule
Γ{2A}{∅}n Γ{3Ā}{3Ā}n

Y-cut
Γ{∅}{∅}n

with the proviso that there is a derivation from Γ{3Ā}{3Ā}n to Γ{3Ā}{∅}n in system

Y.

Fact 4 Consider an instance of Y-cut as above.

If Y = ∅ then it is an instance of cut, i.e. n = 0.

If Y = {4} then Γ{ }{ }n is of the form Γ1{{ }, Γ2{ }
n}.

If Y = {5} then the first hole is inside a box, i.e. depth(Γ{ }{∅}n) > 0.

(If Y = {4, 5} then nothing can be said about the context since the proviso is trivially

fulfilled.)

The rules which are shown in Figure 7 are called structural modal rules for the

modal axioms. They are structural in the sense of not affecting connectives of formu-

las. The modal rules k, d, t, b, 4, 5 are all 3-rules, in the sense that the active formula

in the conclusion has 3 as main connective. We need the admissibility of these struc-

tural modal rules for our cut elimination procedure. They all turn out to be cut-rank

preserving admissible, but for ḋ unfortunately we cannot show this unless we have cut

elimination. So seriality is a bit special. Our solution is to eliminate cut in the presence

of ḋ and only afterwards replace ḋ by d.

The structural modal rules have the obvious corresponding frame conditions. We

slightly extend the definition of X-frame and 45-completeness for sets X ⊆ {d, ḋ, t, b, 4, 5}
in the obvious way. So if either d or ḋ or both are in X then an X-frame is serial.

Before we eliminate the cut we first need to make sure that contraction and weak-

ening can be eliminated without increasing the cut rank. We just strengthen Lemma

1 accordingly to get the following lemma.
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Lemma 8 For each system K + X with X ⊆ {d, ḋ, t, b, 4, 5} the following hold:

(i) The rules nec, wk and ctr are depth- and cut-rank preserving admissible.

(ii) All its rules are depth- and cut-rank preserving invertible.

Proof The proof is just like the one for Lemma 1 except that we also consider cutr and

ḋ. In proving contraction admissibility there is one more case which is mildly interesting

and which is handled as follows:

Γ{∆{A}, ∆{∅}} Γ{∆{Ā}, ∆{∅}}
cutr

Γ{∆{∅}, ∆{∅}}
ctr

Γ{∆{∅}}

;

Γ{∆{A}, ∆{∅}}
wk

Γ{∆{A}, ∆{A}}
ctr

Γ{∆{A}}

Γ{∆{Ā}, ∆{∅}}
wk

Γ{∆{Ā}, ∆{Ā}}
ctr

Γ{∆{Ā}}
cutr

Γ{∆{∅}}

.

ut

Lemma 9 (Admissibility of the modal structural rules)

(i) Let X be a 45-complete subset of {ḋ, t,b, 4, 5} and let ρ ∈ {t, b, 4, 5}. If ρ ∈ X then

ρ̇ is cut-rank preserving admissible for K + X.

(ii) Let X be a 45-complete subset of {d, t, b, 4, 5}. If d ∈ X then ḋ is admissible for

K + X.

Proof For (i) the proof works by an outer induction on the number of instances of ρ̇ in

a given proof, eliminating topmost instances first, and an inner induction on the depth

of the proof above such a topmost instance. For each rule ρ̇ with ρ ∈ X we make a case

analysis on the rule σ above ρ̇. The induction base and the cases where σ is among

∨,∧, 2, cutr, ḋ and t are trivial. We use cut-rank preserving admissibility of contraction

and weakening provided by Lemma 9 without explicitly mentioning it.

ρ̇ = ṫ :
Γ{3A, [A,∆]}

k
Γ{3A, [∆]}

ṫ
Γ{3A, ∆}

;

Γ{3A, [A, ∆]}
ṫ

Γ{3A, A, ∆}
t

Γ{3A, ∆}

The case for σ = b is similar.

Γ{3A, [3A, ∆]}
4

Γ{3A, [∆]}
ṫ

Γ{3A, ∆}

;

Γ{3A, [3A, ∆]}
ṫ

Γ{3A, 3A, ∆}
ctr

Γ{3A, ∆}

For σ = 5 the case is trivial unless the diamond formula in its conclusion is at

depth 1. Then there are two cases, either the 5-rule moves the formula to somewhere

outside the box that is removed by ṫ or somewhere inside it. The second case is similar

to the first, which is as follows, where ρ∗ denotes several applications of ρ:

[3A, ∆], Σ{3A}
5

[3A, ∆], Σ{∅}
ṫ

3A, ∆, Σ{∅}

;

[3A, ∆], Σ{3A}
ṫ

3A, ∆, Σ{3A}
4∗, wk∗, ctr∗

3A, ∆, Σ{∅}

ρ̇ = ḃ :
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Γ{[∆, 3A, [A, Σ]]}
k

Γ{[∆, 3A, [Σ]]}
ḃ

Γ{Σ, [∆, 3A]}

;

Γ{[∆,3A, [A,Σ]]}
ḃ

Γ{Σ, A, [∆, 3A]}
b

Γ{Σ, [∆, 3A]}

Γ{[∆, A, [3A, Σ]]}
b

Γ{[∆, [3A, Σ]]}
ḃ

Γ{3A, Σ, [∆]}

;

Γ{[∆,A, [3A,Σ]]}
ḃ

Γ{3A, Σ, [A, ∆]}
k

Γ{3A, Σ, [∆]}

Γ{[3A, ∆, [3A, Σ]]}
4

Γ{[3A, ∆, [Σ]]}
ḃ

Γ{Σ, [3A, ∆]}

;

Γ{[3A, ∆, [3A, Σ]]}
ḃ

Γ{Σ,3A, [3A,∆]}
5

Γ{Σ, [3A, ∆]}

For σ = 5 the case is trivial unless the diamond formula in its conclusion is at

depth 2 and in the inner box in the premise of ḃ. Then there are three similar cases of

which we just see the following one:

[Σ, [3A, ∆]], Γ{3A}
5

[Σ, [3A, ∆]], Γ{∅}
ḃ

3A, ∆, [Σ], Γ{∅}

;

[Σ, [3A, ∆]], Γ{3A}
ḃ

3A, ∆, [Σ], Γ{3A}
4∗, wk∗, ctr∗

3A, ∆, [Σ], Γ{∅}

ρ̇ = 4̇ :

Γ{3A, [A, ∆]}
k

Γ{3A, [∆]}
4̇

Γ{3A, [[∆]]}

;

Γ{3A, [A, ∆]}
4̇

Γ{3A, [[A, ∆]]}
wk, k

Γ{3A, [3A, [∆]]}
4

Γ{3A, [[∆]]}

The case for σ = 4 is similar and the case for σ = 5 is trivial.

Γ{A, [3A, ∆]}
b

Γ{[3A, ∆]}
4̇

Γ{[[3A, ∆]]}

;

Γ{A, [3A, ∆]}
4̇

Γ{A, [[3A, ∆]]}
wk, b

Γ{[3A, [3A, ∆]]}
5

Γ{[[3A, ∆]]}

ρ̇ = 5̇ :

Γ{3A, [A,∆]}{∅}
k

Γ{3A, [∆]}{∅}
5̇

Γ{3A}{[∆]}

;

Γ{3A, [A, ∆]}{∅}
5̇

Γ{3A}{[A, ∆]}
wk, k

Γ{3A}{3A, [∆]}
5

Γ{3A}{[∆]}

The case for σ = 4 is similar and the case for σ = 5 is trivial. For σ = b we have:

Γ{[A, [3A, ∆], Σ]}{∅}
b

Γ{[[3A,∆], Σ]}{∅}
5̇

Γ{[Σ]}{[3A,∆]}

;

Γ{[A, [3A, ∆], Σ]}{∅}
5̇

Γ{[A,Σ]}{[3A, ∆]}
wk, k

Γ{3A, [Σ]}{[3A,∆]}
5

Γ{[Σ]}{[3A,∆]}

The proof for (ii) is similar to the the one for (i), except that we exclude σ = cutr.

The case σ = b is trivial.

ρ̇ = ḋ :

Γ{3A, [A]}
k

Γ{3A, [∅]}
ḋ

Γ{3A}

;
Γ{3A, [A]}

d
Γ{3A}
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Γ{3A, [3A]}
4

Γ{3A, [∅]}
ḋ

Γ{3A}

;

Γ{3A, [3A]}
wk

Γ{3A, [3A, A]}
4

Γ{3A, [A]}
d

Γ{3A}

Γ{3A}{[3A]}
5

Γ{3A}{[∅]}
ḋ

Γ{3A}{∅}

;

Γ{3A}{[3A]}
wk2

Γ{3A}{3A, [3A, A]}
5

Γ{3A}{3A, [A]}
d

Γ{3A}{3A}
5

Γ{3A}{∅}

ut

To keep the cut elimination procedure short and uniform, we define a structural

rule which moves a box inside a sequent from one place to another. Notice that the

conditions on the context in the proviso exactly match the conditions in the Y-cut-rule:

Definition 13 (Y-str-rule) For Y ⊆ {4, 5} we define a rule

Y-str
Γ{[∆]}{∅}

Γ{∅}{[∆]}

with the proviso that:

if Y = ∅ then Γ{ }{ } is of the form Γ ′{{ }, { }},
if Y = {4} then Γ{ }{ } is of the form Γ1{{ }, Γ2{ }}, and

if Y = {5} then depth(Γ{ }{∅}) > 0.

(This means there is no proviso for the case Y = {4, 5}.)

Lemma 10 (Admissibility of Y-str) For 45-complete X ⊆ {ḋ, t, b, 4, 5} and for Y ⊆ {4, 5}

the rule Y-str is cut-rank preserving admissible for system K + X if Y ⊆ X.

Proof For Y = ∅ that is trivial. For Y = {4} the rule is derivable as follows:

Γ{[∆],Σ{∅}}
4̇∗

Γ{[. . . [∆] . . . ], Σ{∅}}
wk∗

Γ{Σ{[∆]},Σ{∅}}
wk

Γ{Σ{[∆]},Σ{[∆]}}
ctr

Γ{Σ{[∆]}}

,

and thus admissible by Lemma 8 and Lemma 9. For Y = {5} the rule coincides with

5̇ and is thus admissible by Lemma 9. For Y = {4, 5} an instance of the rule is either

an instance of the Y-str-rule for Y = {4} or Y = {5} and thus admissible as in the

previous two cases. ut

Lemma 11 (Reduction Lemma) Let X be a 45-complete subset of {ḋ, t, b, 4, 5}, let Y be

a subset of {4, 5} ∩ X and let r > 0 and n ≥ 0.

(i) If there is a proof

π1

Γ{A}

π2

Γ{Ā}
cutr+1

Γ{∅}



17

with π1 and π2 in K + X + cutr then K + X + cutr ` Γ{∅} .

(ii) If there is a proof

π1

Γ{2A}{∅}n

π2

Γ{3Ā}{3Ā}n

Y-cutr+1
Γ{∅}{∅}n

with π1 and π2 in K + X + cutr then K + X + cutr ` Γ{∅}{∅}n .

Proof We prove (i) and (ii) simultaneously by induction on |π1|+ |π2|. We perform a

case analysis on the two lowermost rules in π1 and π2. If one of the two rules is passive

and an axiom then Γ{∅} is axiomatic as well. If one is active and an axiom then we

have

Γ{a, ā}

π2

Γ{ā, ā}
cutr+1

Γ{ā}

;

π2

Γ{ā, ā}
ctr

Γ{ā}

.

If one rule is passive then we have

π1

Γ{A}

π2

Γ ′{Ā}
ρ

Γ{Ā}
cutr+1

Γ{∅}

;

π1

Γ{A}
ρ̄

Γ ′{A}

π2

Γ ′{Ā}
cutr+1

Γ ′{∅}
ρ

Γ{∅}

for case (i) and similarly for (ii). This leaves the case that both rules are active and

not axioms. For (i) we have:

π1

Γ{B}

π2

Γ{C}
∧

Γ{B ∧ C}

π3

Γ ′{B̄, C̄}
ρ

Γ{B̄ ∨ C̄}
cutr+1

Γ{∅}

;

π1

Γ{B}

π2

Γ{C}
wk

Γ{B̄, C}

π3

Γ{B̄, C̄}
cutr

Γ{B̄}
cutr

Γ{∅}

.

Notice that (i) is a special case of (ii) if A has a modality as its main connective. The

remaining case is thus (ii) with both rules active and not axioms, and thus on one side

the 2-rule and on the other side either k, t or b (the cases for 4 and 5 are trivial). The
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case for the k-rule is as follows:

π1

Γ{[A]}{[∆]}
2

Γ{2A}{[∆]}

π2

Γ ′{3Ā}{3Ā, [Ā, ∆′]}
k

Γ ′{3Ā}{3Ā, [∆′]}
Y-cutr+1

Γ{∅}{[∆]} ;

π1

Γ{[A]}{[∆]}
Y-str

Γ{∅}{[A], [∆]}
wk2

Γ{∅}{[A, ∆], [A, ∆]}
ctr

Γ{∅}{[A, ∆]}

π1

Γ{[A]}{[∆]}
2,wk

Γ{2A}{[Ā, ∆]}

π2

Γ ′{3Ā}{3Ā, [Ā, ∆′]}
Y-cutr+1

Γ{∅}{[Ā, ∆]}
cutr

Γ{∅}{[∆]} ,

where the Y-str-rule is applicable since its condition on the context matches the con-

dition in the Y-cut-rule, the Y-str-rule is cut-rank-preserving admissible by Lemma 10,

weakening and contraction are cut-rank-and-depth-preserving admissible by Lemma 8

and the instance of Y-cut can be removed by induction hypothesis. The cases for t and

b are as follows:

π1

Γ{[A]}{∅}
2

Γ{2A}{∅}

π2

Γ ′{3Ā}{Ā}
t

Γ ′{3Ā}{3Ā}
Y-cutr+1

Γ{∅}{∅} ;

π1

Γ{[A]}{∅}
Y-str

Γ{∅}{[A]}
ṫ

Γ{∅}{A}

π1

Γ{[A]}{∅}
2,wk

Γ{2A}{Ā}

π2

Γ ′{3Ā}{Ā}
Y-cutr+1

Γ{∅}{Ā}
cutr

Γ{∅}{∅}

and

π1

Γ{[A]}{[∆]}
2

Γ{2A}{[∆]}

π2

Γ ′{3Ā}{Ā, [3Ā, ∆′]}
b

Γ ′{3Ā}{[3Ā, ∆′]}
Y-cutr+1

Γ{∅}{[∆]} ;

π1

Γ{[A]}{[∆]}
Y-str

Γ{∅}{[[A], ∆]}
ḃ

Γ{∅}{A, [∆]}

π1

Γ{[A]}{[∆]}
2,wk

Γ{2A}{Ā, [∆]}

π2

Γ ′{3Ā}{Ā, [3Ā, ∆′]}
Y-cutr+1

Γ{∅}{Ā, [∆]}
cutr

Γ{∅}{[∆]} ,



19

In general the Y-cut, seen upwards, introduces several diamond formulas. One of

them is special in being in the same position as its dual cut formula in the other

premise. In the transformations given above, the active formula of the diamond-rule

above the cut is different from that special formula. That is not always the case, of

course, but if the two coincide, then the transformations are simpler. ut

Theorem 5 (Cut Elimination) Let X be a 45-complete subset of either (i) {d, t, b, 4, 5}

or (ii) {ḋ, t, b, 4, 5}. In both cases we have

If K + X + cut ` Γ then K + X ` Γ .

Proof For case (ii) the theorem follows from a routine induction on the cut-rank of

the given proof, the induction step follows by another induction, on the depth of the

proof, and uses the reduction lemma in the case of a maximal-rank cut. For case (i) the

theorem follows from case (ii), the fact that d is derivable for {k, ḋ} and Lemma 9. ut

5 Towards Modularity

Our goal was to give pure proof systems with the good properties of Negri’s labelled

sequent systems and in one respect we failed. The main shortcoming of our systems is

that they are not as modular as labelled systems. They cover the entire modal cube

and are systematic in the sense that there is a one-to-one correspondence between

the modal rules and the frame conditions. However, unlike labelled systems, they are

not modular in the sense that each combination of modal rules is complete for the

corresponding class of frames. This forced us to resort to the kludge of formulating the

condition of 45-complete systems and proving completeness only for those. I do not

see a way of achieving modularity using these systems, i.e. where frame conditions are

formalised in 3-rules.

However, during the cut elimination procedure we discovered the possibility of

forming proof systems not using 3-rules but using the structural rules shown in Figure 7

on page 13. I conjecture that these systems are modular. Notice the absence of the word

“45-complete”:

Conjecture 1 For each sequent Γ and X ⊆ {ḋ, ṫ, ḃ, 4̇, 5̇} we have:

K + X + {ctr, wk} ` Γ iff Γ is X-valid.

In particular, the examples which showed the incompleteness of systems K + {t, 5}

and K+{b, 4} from Fact 2 are provable in systems K+{ṫ, 5̇} and K+{ḃ, 4̇}, respectively:

[3Ā, [A, Ā], [∅]]
k

[3Ā, [A], [∅]]
5̇

[3Ā, [[A]]]
ṫ

3Ā, [[A]]
2

2

3Ā, 22A

and

[[Ā, A],3A]
k

[[Ā], 3A]
4̇

[[[Ā]], 3A]
ḃ

[Ā], [3A]
2

2

2Ā, 23A

.

In the above conjecture, contraction and weakening are present just because they

are not built-in in the modal structural rules, but of course it is easy to do so and then

to drop contraction and weakening.

We can already prove some parts of the above conjecture:
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Theorem 6 For each sequent Γ and each X among {ḋ}, {ṫ}, {ḃ}, and {4̇} we have:

K + X + {ctr, wk} ` Γ iff Γ is X-valid.

Proof For X = {ḋ} this is a trivial consequence of the completeness of K + {d} and

the derivability of d for {k, ḋ}. For X = {ṫ} we prove completeness by embedding the

standard sequent calculus for KT for example from [19]. The interesting two cases are

as follows:

π

Γ, A
2

3Γ, 2A

;

π
′

Γ, A
nec

[Γ, A]
wk

3Γ, [Γ,A]
k∗

3Γ, [A]
2

3Γ, 2A

π

Γ, A
3

Γ, 3A

;

π
′

Γ, A
nec

[Γ, A]
wk

[Γ, A], 3A
k

[Γ ],3A
ṫ

Γ, 3A

.

For X = {ḃ} we show admissibility of b and use completeness of K+{b}. The turn rule,

essentially from [11],

∆, [Γ ]
turn

Γ, [∆]
,

is derivable for {nec, ḃ} and using it we can derive the b-rule as follows:

Γ{A, [3A, ∆]}
turn∗

[Γ ′, A],3A, ∆
k

[Γ ′], 3A, ∆
turn∗

Γ{[3A, ∆]}

.

For X = {4̇} we see completeness of the system K + {4̇′} with the rule

Γ{[∆, [Λ]], [Λ]}
4̇
′

Γ{[∆, [Λ]]}
,

which is derivable for {4̇, wk, ctr}. We define system (K + {4̇′})◦ just like we did be-

fore. Proof search in this system terminates. To see that, we define the modal depth

of a formula as the maximum number of modal connectives encountered along some

path from the root to the leaves. The modal depth of a sequent is the modal depth of

its corresponding formula. No rule, seen bottom-up, increases the modal depth of the

sequent. Thus the depth of any sequent occuring in a proof is bounded. By the subfor-

mula property the number of formulas which can appear in a certain node is bounded.

Thus the size of any sequent occuring in a proof is bounded. Each rule strictly increases

either the size of the sequent or the number of formulas at a certain node and thus a

sequent will be reached where no rule is applicable. It is now straightforward to extract

a transitive countermodel from a failed proof search as in the proof of Theorem 3. ut

Unfortunately, the four cases in the above theorem were proved in four different

ways and neither way of proving them can be easily made to work for the other cases.

A general method to uniformly prove completeness for all combinations of the modal

structural rules is subject of current research.
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6 Relation to other Formalisms

Relation to Kashima’s systems. As I learned after the publication of [4], Kashima in-

troduced sequent systems for some tense logics in [11] which use essentially the same

notion of sequent that I use. He attributes this idea both to Sato [15] and to Bull [6].

Kashima treats tense logics formed from Kt by the axioms for reflexivity, transitivity,

totality and connectedness. System K is just the modal fragment of his system and the

rules for reflexivity and transitivity are also almost the same – the only difference is

that my rules include an implicit contraction to make them invertible and contraction

admissible. Apart from considering different logics, in addition to Kashima’s work, my

completeness proof yields decision procedures, and I give a syntactic cut elimination

procedure which gives rise to the modal structural rules. The notion of deep sequent is

also considered by Poggiolesi who calls it tree-hypersequent but uses a rather different

notation. She gives systems for KD and K4 with a syntactic cut elimination procedure

in [14].

Relation to the calculus of structures. In the calculus of structures (or cos) infer-

ence rules are essentially just term rewriting rules which work on formulas. Formulas

are considered to be equivalent modulo some equations, such as commutativity and

associativity of disjunction. A proof of a formula is a rewriting sequence starting from

some constant t for true and ending with that formula. A system for propositional logic

from from [3] is shown in Figure 8. Systems for modal logics can be obtained by adding

rules from Figure 9.

Essentially, all derivations on nested sequents are also cos derivations: they are are

simply more restricted since rules do not apply deeply with respect to all connectives,

but only with respect to disjunction and box. It is thus trivial to embed our sequent

systems into corresponding cos systems. The reverse direction, embedding cos into deep

sequents, requires cut, but is also easy.

Let an instance of 5↓ be an instance of either 5a↓, 5b↓ or 5c↓. For a set X of rule

names append the symbol ↓ to each name to obtain X↓. Let system KSk be system

KS + {nec↓, k↓}. The following proposition is easily proved, for details see [3]:

Proposition 1 (Relating deep sequent systems and cos) For all X ⊆ {d, t, b, 4, 5}, se-

quents Γ and formulas A we have that:

(i) If K + X ` Γ then KSk + X↓ ` Γ .

(ii) If KSk + X↓+ cos-cut ` A then K + X + cut ` A.

This proposition, together with cut elimination for our deep sequent systems, triv-

ially yields cut elimination for the corresponding cos systems. By (ii) we just translate

a cos-proof with cuts into a deep sequent proof with cuts, eliminate the cuts, and

translate back to cos by (i).

Corollary 2 For all 45-complete X ⊆ {d, t,b, 4, 5} the cos system KSk + X↓ admits cut

elimination.

Relation to labelled systems. The main technical difference between our systems

and labelled systems is that the structural level in labelled systems is more general: it

can form an arbitrary graph, while nested sequents are always trees. The main concep-

tual difference, however, is of course that each deep sequent can be read as a modal

formula. So they are further removed from semantics, more “syntactic” than labelled

sequents. This shows in our completeness proof: we had to establish certain properties



22

S{t}
ai↓

S{a, ā}

S{A ∧ (B ∨ C)}
s↓

S{(A ∧ B) ∨ C}

S{A ∨ A}
c↓

S{A}

S{f}
w↓

S{A}

Fig. 8 Propositional logic in the calculus of structures

S{t}
nec↓

S{2t}

S{2(A ∨ B)}
k↓

S{2A ∨ 3B}

S{2A}
d↓

S{3A}

S{A}
t↓

S{3A}

S{A ∨ 2B}
b↓

S{2(3A ∨ B)}

S{2(A ∨ 3B)}
4↓

S{2A ∨ 3B}

S{3A ∨ 2B}
5a↓

S{2(3A ∨ B)}

S{2B ∨ 2(3A ∨ C)}
5b↓

S{2(3A ∨ B) ∨ 2C}

S{2(A ∨ 2(3B ∨ C))}
5c↓

S{2(A ∨ 3B ∨ 2C)}

Fig. 9 Modal rules in the calculus of structures

of, say, the euclidean closure of a relation, which is not needed for labelled systems.

There, that relation is part of the system and it is being closed under euclideanness by

the appropriate rule. It also shows in our cut elimination procedure: we had to show

admissibility of certain rules in order to push the cut over the rules for the frame prop-

erties. This, again, is not needed for labelled systems. There the rules for the frame

conditions do not affect the cut elimination procedure at all. So, in some sense we had

to do more work in proving our systems complete. I hope that this fact will help in

using deep sequent systems for interpolation proofs, for which labelled systems do not

seem to be well-suited.

Relation to hypersequents. Deep sequents are a natural generalisation of (modal)

hypersequents, in allowing arbitrary nestings of boxed disjunctions instead of just a

disjunction of boxed disjunctions. I am not aware of hypersequent systems for K5

or B nor of hypersequent systems with invertible rules and contraction admissibility

for the modal logics treated here. A notational simplification I enjoy with respect

to hypersequent systems is that the two kinds of context in inference rules (sequent

context and hypersequent context) are merged into one.

Relation to the display calculus. Display sequents are closely related, in particular

the idea of simply allowing the connective 2 as a structural connective is common to

display sequents and deep sequents. However, the proof systems are rather different.

Loosely speaking, in the display calculus one has to make a formula bubble up to the

top by using the structural rules in order to apply a logical rule to it, while in deep

sequent systems one can apply the rule on the spot. This leads to deductive systems

with drastically fewer rules and shorter derivations. On the other hand the display

calculus so far has captured more modal logics than deep sequents and also enjoys a

general cut elimination result, which for deep sequents is subject of current research.

As with hypersequents, I am not aware of display systems with invertible rules and

contraction admissibility.
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