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Abstract. We see cut-free sequent systems for the basic normal modal
logics formed by any combination the axioms d, t,b, 4, 5. These systems
are modular in the sense that each axiom has a corresponding rule and
each combination of these rules is complete for the corresponding frame
conditions. The systems are based on nested sequents, a natural generali-
sation of hypersequents. Nested sequents stay inside the modal language,
as opposed to both the display calculus and labelled sequents. The com-
pleteness proof is via syntactic cut elimination.

1 Introduction

This paper is part of a research effort to develop proof-theoretic systems for
modal logic that stay inside the modal language. This requirement in particular
excludes the display calculus [2, 16], which is formulated in the language of tense
logic, and labelled sequents, see for example [12], which are formulated in a
hybrid language.

Examples of modal proof systems that stay inside the modal language are
hypersequent systems [1], systems in the calculus of structures [10, 14, 15, 9] and,
what we will study here, systems using nested sequents. Nested sequents are a
natural generalisation of hypersequents, and they have been invented several
times independently, for example by Bull [6], by Kashima [11], by Brünnler [4,
3] (using the name deep sequent at the time) and by Poggiolesi (using the name
tree-hypersequent) [13].

In this paper we provide cut-free sequent systems for the basic normal modal
logics formed from the axioms d, t, b, 4, 5 which are modular in the sense that
each modal axiom has a corresponding sequent calculus rule and that each com-
bination of these rules is sound and complete for the corresponding modal logic.
To our knowledge, these are the first systems inside the modal language which
are modular.

These systems are closely related to the systems introduced in [3], in particu-
lar the subsystem for the modal logic K is essentially the same. Modal axioms in
[3] were turned into 3-rules, that is, rules where the active formula in the con-
clusion has the connective 3 as its main connective. However, these systems are



not modular. For example, the logic S5 can be axiomatised in a Hilbert system
both by using the axioms t, b, 4 and by using t, 5. While there is a complete cut-
free system for S5 in [3], namely one with the rules t, b, 4, 5, neither the cut-free
system with rules t, b, 4 nor the cut-free system with the rules t, 5 are complete
for S5. Here, we follow another approach to designing modal rules. We do not
turn modal axioms into 3-rules, but into structural rules. These structural rules
are the key to modularity, as was already conjectured in [4].

Proving completeness for our systems turned out to be challenging. We do so
by way of embedding a corresponding Hilbert system and syntactically proving
cut-elimination. The cut-elimination proof is interesting: it relies on a decompo-
sition of the contraction rule, similar to what has been observed in deep inference
systems for propositional logic, where contraction is decomposed into an atomic
version and a local medial rule [5].

2 The Sequent Systems

Formulas and modal axioms. Propositions p and their negations p̄ are atoms, with
¯̄p defined to be p. Formulas, denoted by A, B, C, D are given by the grammar

A ::= p | p̄ | (A ∨ A) | (A ∧ A) | 3A | 2A .

Given a formula A, its negation Ā is defined as usual using the De Morgan
laws, A ⊃ B is defined as Ā ∨ B and > and ⊥ are respectively defined as p ∨ p̄
and p∧ p̄ for some proposition p. Each name in {k, d, t, b, 4, 5} corresponds both
to a frame condition and to a Hilbert-style axiom:

k: > 2(A ∨ B) ⊃ (2A ∨ 3B)
d: serial 2A ⊃ 3A
t: reflexive A ⊃ 3A

b: symmetric A ⊃ 23A
4: transitive 2A ⊃ 22A
5: euclidean 3A ⊃ 23A

.

Nested sequents. A nested sequent is a finite multiset of formulas and boxed se-
quents. A boxed sequent is an expression [Γ ] where Γ is a nested sequent. In the
following, a sequent is a nested sequent. Sequents are denoted by Γ, ∆, Λ, Π, Σ.
As usual, sequents are written without curly braces and the comma in the ex-
pression Γ, ∆ is multiset union. A sequent is always of the form

A1, . . . , Am, [∆1], . . . , [∆n] .

The corresponding formula of the above sequent is ⊥ if m = n = 0 and otherwise

A1 ∨ · · · ∨ Am ∨ 2(D1) ∨ · · · ∨ 2(Dn) ,

where D1 . . .Dn are the corresponding formulas of the sequents ∆1 . . . ∆n. Notice
that a sequent induces a tree where each node is marked with a multiset of
formulas. We will refer to notions such as the depth or the root of a sequent,
meaning the depth or the root of the corresponding tree.

Sequent contexts. Informally, a context is a sequent with holes. We will
mostly encounter sequents with just one or two holes. A unary context is a
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sequent with exactly one occurrence of the symbol { }, the hole, which does not
occur inside formulas. Such contexts are denoted by Γ{ }, ∆{ }, and so on. The
hole is also called the empty context. The sequent Γ{∆} is obtained by replacing
{ } inside Γ{ } by ∆. For example, if Γ{ } = A, [[B], { }] and ∆ = C, [D] then

Γ{∆} = A, [[B], C, [D]] .

The depth of a unary context Γ{ }, denoted depth(Γ{ }) is defined as follows

depth(Γ, { }) = 0
depth(Γ, [∆{ }]) = depth(∆{ }) + 1.

More generally, a context is a sequent with n ≥ 0 occurrences of { }, which do
not occur inside formulas, and which are linearly ordered. A context with n holes
is denoted by

Γ { } . . . { }
︸ ︷︷ ︸

n−times

.

Holes can be filled with sequents, or contexts, in general. For example, if Γ{ }{ } =
A, [[B], { }], { } and ∆{ } = C, [{ }] then

Γ{∆{ }}{ } = A, [[B], C, [{ }]], { } ,

where in all contexts the holes are ordered from left to right as shown.
System K + Ẋ. Figure 1 shows the set of rules from which we form our

deductive systems. System K is the set of rules {∧,∨, 2, k, ctr}. We will look
at extensions of System K with sets of rules Ẋ ⊆ {ḋ, ṫ, ḃ, 4̇, 5̇}. The rules in
Ẋ are called structural modal rules. The 5̇-rule is a bit special since it uses a
two-hole-context. It can actually be decomposed into three rules that use unary
contexts. However, here we prefer the presentation with a single rule. The 5̇-rule
may be understood as allowing to do the following, when going from premise to
conclusion: take a boxed sequent [∆], which is not at the root of the sequent,
and move it to any other place in the sequent.

Notice that we have an explicit contraction rule in system K and that the
k-rule is not invertible. It is of course easy to drop contraction and build it into
the k-rule and into the rules in Ẋ, which makes all rules invertible. The reason
we choose not to do this is because our cut-elimination procedure works better
with explicit contraction.

There are also some rules that will turn out to be admissible, namely the
3-rules, and the rules necessitation, weakening and cut, which are shown in
Figure 2. A 3-rule is in a certain sense the result of “reflecting” the corresponding
structural rule at the cut, and vice versa. This comment will hopefully become
more clear after the proof of the reduction lemma.

Given a set X ⊆ {d, t, b, 4, 5}, Ẋ is the corresponding subset of {ḋ, ṫ, ḃ, 4̇, 5̇}

and
�

X is the corresponding subset of {
�

d,
�

t,
�

b,
�

4,
�

5}.
Inference rules, derivations, proofs. In the following instance of an inference

rule ρ

ρ
Γ1 . . . Γn

∆
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Γ{p, p̄} ∧
Γ{A} Γ{B}

Γ{A ∧ B}
∨

Γ{A, B}
Γ{A ∨ B}

2
Γ{[A]}
Γ{2A}

k
Γ{[A, ∆]}

Γ{3A, [∆]}
ctr

Γ{∆, ∆}
Γ{∆}

ḋ
Γ{[∅]}
Γ{∅}

ṫ
Γ{[∆]}
Γ{∆}

ḃ
Γ{[∆, [Σ]]}
Γ{[∆], Σ}

4̇
Γ{[∆], [Σ]}
Γ{[[∆], Σ]}

5̇
Γ{[∆]}{∅}
Γ{∅}{[∆]}

depth(Γ{ }{∅}) > 0

Fig. 1. System K+{ḋ,ṫ,ḃ,4̇,5̇}

�

d
Γ{[A]}
Γ{3A}

�

t
Γ{A}

Γ{3A}

�

b
Γ{[∆], A}

Γ{[∆, 3A]}

�

4
Γ{[∆, 3A]}
Γ{3A, [∆]}

�

5
Γ{∅}{3A}
Γ{3A}{∅}

depth(Γ{ }{∅}) > 0

nec
Γ

[Γ ]
wk

Γ{∅}
Γ{∆}

cut
Γ{A} Γ{Ā}

Γ{∅}

Fig. 2. Diamond rules, necessitation, weakening, cut

we call Γ1 . . . Γn its premises and ∆ its conclusion. We write ρn to denote n
instances of ρ and ρ∗ to denote an unspecified number of instances of ρ. A
system, denoted by S, is a set of inference rules. A derivation in a system S is a
finite tree whose nodes are labelled with sequents and which is built according
to the inference rules from S. The sequent at the root is the conclusion and the
sequents at the leaves are the premises of the derivation. Derivations are denoted
by D. A derivation D with conclusion Γ in system S is sometimes shown as

S

Γ

.

The depth of a derivation D is denoted by |D|. A proof of a sequent Γ in a
system is a derivation in this system with conclusion Γ and where all premises
are instances of the axiom Γ{p, p̄}. Proofs are denoted by P . We write S ` Γ
if there is a proof of Γ in system S. An inference rule ρ is (depth-preserving)
admissible for a system S if for each proof in S ∪ {ρ} there is a proof of in S
with the same conclusion (and with at most the same depth).
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Soundness of our systems is easily established similarly to soundness of the
systems in [4]:

Theorem 1 (Soundness). Let X ⊆ {d, t, b, 4, 5}. If a sequent is provable in K+ Ẋ

then its corresponding formula is provable in a Hilbert system for the modal logic
K extended by the axioms in X.

Our main result is cut-elimination, which we prove in the next section.

Theorem 2 (Cut-Elimination). Let X ⊆ {d, t, b, 4, 5}. If K + Ẋ + cut ` Γ then
K + Ẋ ` Γ .

By using cut-elimination we obtain the completeness theorem:

Theorem 3 (Completeness). Let X ⊆ {d, t, b, 4, 5}. If a formula is provable in a
Hilbert system for the modal logic K extended by the modal axioms in X then it
is provable in system K + Ẋ.

Proof. Given a proof in the Hilbert system we construct a proof in K + Ẋ + cut

as usual, and then apply Theorem 2 (Cut-elimination). We show proofs for the
modal axioms:

[Ā, A]
k
2

3Ā, 3A, [∅]
ḋ

3Ā, 3A
∨

2A ⊃ 3A

[A, Ā]
k

[Ā], 3A
ṫ

Ā, 3A
∨

A ⊃ 3A

[[A, Ā]]
k

[[Ā], 3A]
ḃ

Ā, [3A]
2

Ā, 23A
∨

A ⊃ 23A

[Ā, A], [∅]
k

3Ā, [A], [∅]
4̇

3Ā, [[A]]
2

2

3Ā, 22A
∨

2A ⊃ 22A

[[Ā, A]]
k

[[Ā], 3A]
5̇

[Ā], [3A]
2

2

2Ā, 23A
∨

3A ⊃ 23A

.

ut

3 Syntactic Cut-Elimination

We first need some definitions. The depth of a formula A, denoted depth(A),
is defined as usual, the depth of possibly negated atoms being zero. Given an
instance of the cut rule as shown in Figure 2, its cut formula is A and its cut rank
is one plus the depth of its cut formula. For r ≥ 0 we define the rule cutr which
is cut with at most rank r. The cut rank of a derivation is the supremum of the
cut ranks of its cuts. A rule is cut-rank (and depth-) preserving admissible for a
system S if for all r ≥ 0 the rule is (depth-preserving) admissible for S + cutr.

Lemma 1 (Weakening and necessitation admissibility). Let X ⊆ {d, t, b, 4, 5}.
The wk-rule and the nec-rule are depth- and cut-rank-preserving admissible for
K + Ẋ.

Proof. A routine induction shows that a single nec or wk-rule can be eliminated
from a given proof, a second induction on the number of nec or wk-rules yields
our lemma. ut
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Γ{[A, . . . , A]}
m2

Γ{2A}

Γ{A, . . . , A} Γ{B, . . . , B]}
m∧

Γ{A ∧ B}

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcut

Γ{∅}

Γ{[∆], [Σ]}
med

Γ{[∆, Σ]}

Γ{A, A}
fctr

Γ{A}

Fig. 3. Multi-rules, medial, and formula contraction

Seriality (the rule ḋ) is different from the other rules: it trivially permutes
below the cut. So we can get it out of the way and then prove cut elimination
for the systems without seriality.

Lemma 2 (Push down seriality). Let X ⊆ {d, t, b, 4, 5} and d ∈ X. For each proof
as shown on the left there is a proof as shown on the right:

K+Ẋ+cut

Γ

;

K+Ẋ−ḋ+cut

Γ ′

‖
‖ ḋ

Γ

.

Proof. By an easy permutation argument, making use of weakening admissibility.

We also get contraction out of the way in order to eliminate the cut. First,
we decompose contraction into the fctr-rule, which is contraction on formulas,
and the med-rule, shown in Figure 3. We permute down the fctr-rule. It does not
permute down below the rules cut, 2 and ∧, so we generalise these rules as in Fig-
ure 3. We define a contraction-free system K− as K− = K− ctr+{med, m2, m∧}
and will show cut elimination for that system, but first we develop the machinery
to show that cut elimination for K− leads to cut-elimination for K (with any Ẋ).

Lemma 3 (Decompose contraction). The ctr-rule is derivable for {fctr, med}.

Proof. By induction the depth of a sequent which is contracted, we show the
inductive step:

Γ{A1, . . . , Am, [∆1], . . . , [∆n], A1, . . . , Am, [∆1], . . . , [∆n]}
ctr

Γ{A1, . . . , Am, [∆1], . . . , [∆n]}

;

Γ{A1, . . . , Am, [∆1], . . . , [∆n], A1, . . . , Am, [∆1], . . . , [∆n]}
med

n

Γ{A1, . . . , Am, A1, . . . , Am, [∆1, ∆1], . . . , [∆n, ∆n]}
ctr

n

Γ{A1, . . . , Am, A1, . . . , Am, [∆1], . . . , [∆n]}
fctr

m

Γ{A1, . . . , Am, [∆1], . . . , [∆n]}

ut
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Lemma 4 (Weakening and necessitation admissibility for K−). Let X ⊆ {d, t, b, 4, 5}.
The wk-rule and the nec-rule are depth- and cut-rank-preserving admissible for
K
− + Ẋ.

Lemma 5 (From mcut to cut). The rule mcutr is derivable for {cutr, wk}.

Proof. We define the rule mcut
m,n
r with m, n > 0 as

Γ{

m−times
︷ ︸︸ ︷

A, . . . , A} Γ{

n−times
︷ ︸︸ ︷

Ā, . . . , Ā}

Γ{∅}

,

and show that rule derivable for {cutr, wk} by induction on m + n. The case for
m = n = 1 is trivial, for m > 1 and n = 1 we replace

Γ{A, . . . , A} Γ{Ā}
mcut

m,1
r

Γ{∅}

by

Γ{A, . . . , A}

Γ{Ā}
wk

Γ{Ā, A}
mcut

m−1,1
r

Γ{A} Γ{Ā}
cutr

Γ{∅}

and apply the induction hypothesis, and for m, n > 1 we replace

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcut

m,n

r

Γ{∅}

by

Γ{A, . . . , A}

Γ{Ā, . . . , Ā}
wk

Γ{Ā, . . . , Ā, A}
mcut

m−1,n

r

Γ{A}

Γ{A, . . . , A}
wk

Γ{A, . . . , A, Ā} Γ{Ā, . . . , Ā}
mcut

m,n−1
r

Γ{Ā}
cutr

Γ{∅}

and apply the induction hypothesis twice. ut

Lemma 6 (Push down contraction). Let X ⊆ {t, b, 4, 5}. Given a proof as shown
on the left, with ρ a single-premise-rule from K− + Ẋ + wk, there is a proof as
shown on the right, with |D′| ≤ |D|:

P
K

−+Ẋ+mcut+wk

Γ2

D
‖
‖ fctr

Γ1
ρ

Γ

;

P′

K
−+Ẋ+mcut+wk

Γ3

D′ ‖
‖ fctr

Γ

.
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Proof. By induction on the length of D and a case analysis on ρ. Most cases are
trivial. We show the two interesting ones. For ρ = ∨ and ρ = k we apply the
following transformations:

Γ{A, A, B}
fctr

Γ{A, B}
∨

Γ{A ∨ B}

;

Γ{A, A, B}
wk

Γ{A, B, A, B}
∨2

Γ{A ∨ B, A ∨ B}
fctr

Γ{A ∨ B}

Γ{[A, A, ∆]}
fctr

Γ{[A, ∆]}
k

Γ{3A, [∆]}

;

Γ{[A, A, ∆]}
k
2

Γ{3A, 3A, [∆]}
fctr

Γ{3A, [∆]}

,

and in each case we apply the induction hypothesis twice. ut

Proposition 1 (Push down contraction). Given a proof as shown on the left, there
is a proof as shown on the right:

P
K+Ẋ+cut

Γ

;

P′

K
−+Ẋ+cut

Γ ′

‖
‖ fctr

Γ

.

Proof. We first prove the claim that for each proof as shown on the left there is
a proof as shown on the right:

P1
K

−+Ẋ+cut+fctr

Γ

;

P′

1 K
−+Ẋ+mcut+wk

Γ ′

‖
‖ fctr

Γ

,

The proof of the claim is by induction on the depth of P1, using Lemma 6 (Push
down contraction). The proof of our proposition is as follows: by Lemma 3 (De-
compose contraction) we obtain a proof in K− + Ẋ + cut + fctr, we apply our
claim, then we use Lemma 5 (From mcut to cut), to replace mcut, starting with
the top-most instances. Finally we remove weakening using weakening admissi-
bility. ut

The following three lemmas are needed for the reduction lemma. We define

X
+ =







X ∪ {4} if {t, 5} ⊆ X or {b, 5} ⊆ X

X ∪ {5} if {b, 4} ⊆ X

X otherwise ,

8



and likewise for
�

X and Ẋ.

Lemma 7 (Push down 45). Let X ⊆ {t, b, 4, 5} and ρ ∈ (
�

X ∩ {
�

4,
�

5}). Given a
derivation as shown on the left, where ρ applies to 3A, there is a derivation as
shown on the right, where all rules in D3 apply to the instance of 3A shown,
and where |D2| ≤ |D1|:

Γ{3A}
ρ

Γ1{3A}

D1
‖
‖ Ẋ+med

∆{3A}

;

Γ{3A}

D2
‖
‖ Ẋ+med

Γ2{3A}

D3
‖
‖ (

�

X
+∩{

�

4,
�

5})

∆{3A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply the induction hypothesis, possibly several times. We only
show the non-trivial permutations.

Γ{[3A, ∆], [Σ]}�

4

Γ{3A, [∆], [Σ]}
med

Γ{3A, [∆, Σ]}

;

Γ{[3A, ∆], [Σ]}
med

Γ{[3A, ∆, Σ]}�

4

Γ{3A, [∆, Σ]}

Γ{[3A, ∆]}�

4

Γ{3A, [∆]}
ṫ

Γ{3A, ∆}

;
Γ{[3A, ∆]}

ṫ

Γ{3A, ∆}

Γ{[∆, [3A, Σ]]}�

4

Γ{[3A, ∆, [Σ]]}
ḃ

Γ{[3A, ∆], Σ}

;

Γ{[∆, [3A, Σ]]}
ḃ

Γ{3A, [∆], Σ}�

5

Γ{[3A, ∆], Σ}

Γ{[3A, ∆], [Σ]}�

4

Γ{3A, [∆], [Σ]}
4̇

Γ{3A, [[∆], Σ]}

;

Γ{[3A, ∆], [Σ]}
4̇

Γ{[[3A, ∆], Σ]}�

4

Γ{[3A, [∆], Σ]}�

4

Γ{3A, [[∆], Σ]}

Γ{[3A, ∆]}{∅}�

4

Γ{3A, [∆]}{∅}
5̇

Γ{3A}{[∆]}

;

Γ{[3A, ∆]}{∅}
5̇

Γ{∅}{[3A, ∆]}�

5

Γ{3A}{[∆]}

Permuting down the
�

5-rule is trivial except over the ṫ-rule and the ḃ-rule,
and this is also trivial unless the restriction on the depth of the context in the
�

5-rule becomes relevant:

Γ1, [∆], Γ2{3A}�

5

Γ1, [3A, ∆], Γ2{∅}
ṫ

Γ1, 3A, ∆, Γ2{∅}

;

Γ1, [∆], Γ2{3A}
ṫ

Γ1, ∆, Γ2{3A}�

4
∗

Γ1, 3A, ∆, Γ2{∅}
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[∆, [Σ]], Γ{3A}�

5

[∆, [Σ, 3A]], Γ{∅}
ḃ

[∆], Σ, 3A, Γ{∅}

;

[∆, [Σ]], Γ{3A}
ḃ

[∆], Σ, Γ{3A}�

4
∗

[∆], Σ, 3A, Γ{∅}

ut

Lemma 8 (Push down ktb). Let X ⊆ {t, b, 4, 5} and let ρ = k or ρ ∈ (
�

X∩{
�

t,
�

b}).
Given a derivation as shown on the left, where ρ applies to 3A, there is a

derivation as shown on the right, with σ = k or σ ∈ (
�

X ∩ {
�

t,
�

b}), where all rules
in D3 apply to the instance of 3A shown, and where |D2| ≤ |D1|:

Γ{A}
ρ

Γ1{3A}

D1
‖
‖ Ẋ+med

∆{3A}

;

Γ{A}

D2
‖
‖ Ẋ+med

Γ3{A}
σ

Γ2{3A}

D3
‖
‖ (

�

X
+∩{

�

4,
�

5})

∆{3A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply Lemma 7 (Push down 45) and/or the induction hypothesis.
We only show the non-trivial permutations.

Γ{[A, ∆]}
k

Γ{3A, [∆]}
ṫ

Γ{3A, ∆}

;

Γ{[A, ∆]}
ṫ

Γ{A, ∆}
�

t

Γ{3A, ∆}

Γ{[∆, [A, Σ]]}
k

Γ{[3A, ∆, [Σ]]}
ḃ

Γ{[3A, ∆], Σ}

;

Γ{[∆, [A, Σ]]}
ḃ

Γ{A, [∆], Σ}�

b

Γ{[3A, ∆], Σ}

Γ{[A, ∆], [Σ]}
k

Γ{3A, [∆], [Σ]}
4̇

Γ{3A, [[∆], Σ]}

;

Γ{[A, ∆], [Σ]}
4̇

Γ{[[A, ∆], Σ]}
k

Γ{[3A, [∆], Σ]}�

4

Γ{3A, [[∆], Σ]}

Γ{[A, ∆]}{∅}
k

Γ{3A, [∆]}{∅}
5̇

Γ{3A}{[∆]}

;

Γ{[A, ∆]}{∅}
5̇

Γ{∅}{[A, ∆]}
k

Γ{∅}{3A, [∆]}�

5

Γ{3A}{[∆]}

The cases for ρ =
�

t are trivial.
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Γ{[∆], A}�

b

Γ{[∆, 3A]}
ṫ

Γ{∆, 3A}

;

Γ{[∆, A]}
ṫ

Γ{∆, A}
�

t

Γ{∆, 3A}

Γ{[Σ, [∆], A]}�

b

Γ{[Σ, [∆, 3A]]}
ḃ

Γ{[Σ], ∆, 3A}

;

Γ{[Σ, [∆], A]}
ḃ

Γ{[Σ, A], ∆}
k

Γ{[Σ], ∆, 3A}

Γ{[∆], A, [Σ]}�

b

Γ{[∆, 3A], [Σ]}
4̇

Γ{[[∆, 3A], Σ]}

;

Γ{[∆], A, [Σ]}
4̇

Γ{[[∆], Σ], A}�

b

Γ{[[∆], 3A, Σ]}�

5

Γ{[[∆, 3A], Σ]}

For permuting down over the 5̇-rule, in the only non-trivial case, notice that
the context has to be of the form shown because of the restriction of context
depth in the 5̇-rule:

Γ{∅}{[Σ, [∆], A]}�

b

Γ{∅}{[Σ, [∆, 3A]]}
5̇

Γ{[∆, 3A]}{[Σ, ∅]}

;

Γ{∅}{[Σ, [∆], A]}
5̇

Γ{[∆]}{[A, Σ]}
k

Γ{[∆]}{3A, [Σ, ∅]}�

5

Γ{[∆, 3A]}{[Σ, ∅]}

ut

Lemma 9 (Reflect 45). Let X ⊆ {4, 5}. Given a derivation as shown on the left,
where all rules in D apply to the instance of 3A shown, then for each sequent
∆ there is a derivation as shown on the right:

Γ{3A}{∅}

D
‖
‖

�

X

Γ{∅}{3A}

;

Γ{∅}{[∆]}

D′ ‖
‖ Ẋ

Γ{[∆]}{∅}

.

Proof. By induction on the length of D. ut

Lemma 10 (Reduction Lemma). Let X ⊆ {t, b, 4, 5}. Given a proof as shown on
the left, with P1 and P2 in K−+Ẋ+cutr, then there is a proof P in K−+Ẋ++cutr

as shown on the right:

P1

Γ1{A}
‖
‖ Ẋ+med

Γ{A}

P2

Γ2{Ā}
‖
‖ Ẋ+med

Γ{Ā}
cutr+1

Γ{∅}

; P

Γ{∅}

.
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Proof. As usual, by an induction on |P1| + |P2| and a case analysis on the
lowermost rules in P1 and P2. We only show the most complicated case, in
which we cut a box introduced by the m2-rule against a diamond introduced by
k-rule. All other cases are much simpler. We have

Γ1{[B, . . . , B]}
m2

Γ1{2B}
‖
‖ Ẋ+med

Γ{2B}

Γ ′
2{[B̄, ∆]}

k

Γ ′
2{3B̄, [∆]}

‖
‖ Ẋ+med

Γ{3B̄}
cutr+1

Γ{∅}

In the left subderivation we permute down the instance of m2 and on the right
subderivation we apply Lemma 8 (Push ktb down) in order to obtain the follow-
ing derivation, where Γ{ } = Γ{ }{∅}. Note that the second hole in the binary
context marks the position to which the 3B̄ is moved:

Γ1{[B, . . . , B]}
‖
‖ Ẋ+med

Γ{[B, . . . , B]}{∅}
m2

Γ{2B}{∅}

Γ ′
2{[B̄, ∆]}

‖
‖ Ẋ+med

Γ3{B̄}
σ

Γ{∅}{3B̄}
‖
‖ (X+∩{4,5})3

Γ{3B̄}{∅}
cutr+1

Γ{∅}{∅}

By using Lemma 9 (Reflect 45) we obtain a derivation D and build:

Γ1{[B, . . . , B]}
‖
‖ Ẋ+med

Γ{[B, . . . , B]}{∅}

D
‖
‖ (X+∩{4,5})·

Γ{∅}{[B, . . . , B]}
m2

Γ{∅}{2B}

Γ ′
2{[B̄, ∆]}

‖
‖ Ẋ+med

Γ3{B̄}
σ

Γ{∅}{3B̄}
cutr+1

Γ{∅}{∅}

.

We now consider the three possible cases for σ ∈ {k,
�

t,
�

b} and apply one of the
following transformations to the relevant part of the proof:

Σ{[B, . . . , B], [∆]}
m2

Σ{2B, [∆]}

Σ{[B̄, ∆]}
k

Σ{3B̄, [∆]}
cutr+1

Σ{[∆]}

;

Σ{[B, . . . , B], [∆]}
med

Σ{[B, . . . , B, ∆]} Σ{[B̄, ∆]}
mcutr

Σ{[∆]}

Σ{[B, . . . , B]}
m2

Σ{2B}

Σ{B̄}
�

t

Σ{3B̄}
cutr+1

Σ{∅}

;

Σ{[B, . . . , B]}
ṫ

Σ{B, . . . , B} Σ{B̄}
mcutr

Σ{∅}
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Σ{[[B, . . . , B], ∆]}
m2

Σ{[2B, ∆]}

Σ{B̄, [∆]}�

b

Σ{[3B̄, ∆]}
cutr+1

Σ{[∆]}

;

Σ{[[B, . . . , B], ∆]}
ḃ

Σ{B, . . . , B, ∆]} Σ{B̄, [∆]}
mcutr

Σ{[∆]}

.

We then eliminate mcut by using Lemma 5 (From mcut to cut) and weakening
admissibility. ut

Proposition 2 (Cut-elimination for K−). Let X ⊆ {t, b, 4, 5}. If K−+ Ẋ+ cut ` Γ
then K− + Ẋ+ ` Γ .

Proof. We first prove the claim: If K−+ Ẋ+cutr+1 ` Γ then K−+ Ẋ+ +cutr ` Γ .
The claim is proved by induction on the depth of the given proof, using the
reduction lemma. Our proposition then follows from an induction on the cut
rank of the given proof, using the claim. ut

Lemma 11 (From X+ to X).
(i) The 4̇-rule is derivable for {ṫ, 5̇, nec}.

(ii) The 4̇-rule is derivable for {ḃ, 5̇, nec}.
(iii) The 5̇-rule is derivable for {ḃ, 4̇, wk}.

Proof. For (i) notice that the 4̇-rule is a special case of the 5̇-rule unless Γ{ }
has depth zero, and thus Γ{ } = Λ, { }. In that case we have:

Λ, [∆], [Σ]
4̇

Λ, [[∆], Σ]
;

Λ, [∆], [Σ]
nec

[Λ, [∆], [Σ]]
5̇

[Λ, [[∆], Σ]]
ṫ

Λ, [[∆], Σ]

.

For (ii) we again have to consider only the case where Γ{ } = Λ, { }:

Λ, [∆], [Σ]
4̇

Λ, [[∆], Σ]
;

Λ, [∆], [Σ]
nec

2

[[Λ, [∆], [Σ]]]
5̇

[[Λ, [Σ]], [∆]]
ḃ

[[Λ], [∆], Σ]
ḃ

Λ, [[∆], Σ]

For (iii) notice that a sequent has a tree structure and that, seen upwards, the
5̇-rule allows to move a boxed sequent [∆] to any position in that tree, but not
to the root. To move a boxed sequent to any position in the tree it is enough if
we are both able to move it a) from a given node the parent of this node and
b) to move it from a given node to any child of that node. Point a) is just the
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4̇-rule and point b) is as follows:

Γ{[Λ, [∆]]}
wk

Γ{[Λ, [∅], [∆]]}
4̇

Γ{[Λ, [[∆]]]}
ḃ

Γ{[Λ], [∆]}

.

ut

Proof (of Theorem 2 (Cut-elimination)). We first prove the theorem for the
cases where d /∈ X. The transformation (i) is by Proposition 1 (Push down
contraction), the transformation (ii) is Proposition 2 (Cut-elimination for K−),
and transformation (iii) is by Lemma 11 (From X+ to X) and weakening and
necessitation admissibility.

P1
K+Ẋ+cut

Γ

(i)
;

P2
K

−+Ẋ+cut

Γ ′

‖
‖ fctr

Γ

(ii)
;

P3
K

−+Ẋ
+

Γ ′

‖
‖ fctr

Γ

(iii)
; P4

K+Ẋ

Γ

.

In the cases where d ∈ X we first apply Lemma 2 (Push down seriality) and then
proceed the same way with the upper part of the proof. ut

Future work. It looks like the cut-elimination proof can be generalised. So
it is our goal to devise 1) easily checkable critera on rules, which guarantee
cut-elimination, and 2) a procedure which turns modal axioms into rules which
satisfy these criteria. Such a generic cut-elimination procedure exists already for
the display calculus, but relies on the so-called display property, and thus on
the language of tense logic. Recently, such a procedure has also been proposed
by Ciabattoni et al. for hypersequent systems [8]. While hypersequents do not
seem to be expressive enough for the modal logics considered here, nested se-
quents seem to add just the right amount of extra generality to enable a similar
development for modal logics.

Related work. The fact that structural rules improve modularity has been
observed before by Castilho et. al. [7] in the context of tableau systems. Our
3-rules correspond exactly to what are called propagation rules in [7]. While
the focus of [7] is on giving decision procedures, our focus is on giving proof
systems which support a notion of cut-elimination. This is more easily done
with local rules, so in sequent systems instead of tableau systems. A further
difference is that propagation rules and structural rules are mixed in [7], while
here we treat systems with structural rules only (and in [3] we treated systems
with propagation- or 3-rules only).
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