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Abstract

Justification logics are refinements of modal logics where modalities are replaced by justification terms.
They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a
single realization theorem which uniformly connects all the normal modal logics formed from the axioms
d, t, b, 4, and 5 with their justification counterparts. The proof employs cut-free nested sequent systems
together with Fitting’s realization merging technique. We further strengthen the realization theorem for
KB5 and S5 by showing that the positive introspection operator is superfluous.
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1 Introduction

Justification logic. The language of justification logic is a refinement of the
language of modal logic. It replaces a single modality by a family of modalities,
indexed by what are called justification terms. Given a modal formula such as 2A,
which can be read as A is provable or as A is known, a justification counterpart of
that formula of the form t :A can be read as t is a proof of A or as A is known for
reason t.

The first justification logic, called the Logic of Proofs or LP, was introduced by
Artemov [1,2] as a stepping stone for giving an arithmetical semantics for the modal
logic S4. Justification logics are also interesting as epistemic logics. Justification
terms have a structure and thus provide a measure of how hard it is to obtain
knowledge of something. Because of that, justification logics avoid the well-known
logical omniscience problem, as Artemov and Kuznets argue in [5].

The formal correspondence between S4 and LP is called a realization theorem. It
has two directions. First, each provable formula of S4 can be turned into a provable
formula of LP by realizing instances of modalities with justification terms. Second
and vice versa, if all terms in a provable formula of LP are replaced with modalities,
then the resulting modal formula is provable in S4.

1 Goetschi and Kuznets are supported by Swiss National Science Foundation grant 200021–117699.
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Similar correspondences have been established for several other modal logics
besides S4. An overview is given by Artemov in [3].

Methods for proving realization. There are two methods of establishing
such correspondences: the syntactic method due to Artemov [1,2] and the semantic
method due to Fitting [11]. The syntactic method makes use of cut-free Gentzen
systems for modal logics, while the sematic method makes use of a Kripke-style
semantics for justification logics. In contrast to the semantic method, the syntactic
method is constructive. It provides an algorithm that, for each occurrence of a
modality in a given modal formula, computes a justification term that realizes it.

The semantic method was used to prove several realization theorems: for S4,
S5, K45, and KD45 [3,11,16]. Constructive realizations, via the syntactic method,
are available for K, D, T, K4, D4, S4, and S5 [2,4,7,12,13]. In the case of S5, where
no cut-free sequent system is available, two approaches have been used: first, a
cut-free hypersequent system [4] and, second, an embedding of S5 into K45 [12].
This embedding also requires the use of a certain technique of realization merging
developed by Fitting in [13]. However, neither approach applies to other modal
logics that lack cut-free sequent systems, such as K5 and KB. The goal of this paper
is to realize these logics and, in general, to provide a uniform constructive method
of realizing all normal modal logics formed by the axioms d, t, b, 4, and 5.

Nested sequents. To that end, we use the cut-free proof systems given by
Brünnler in [9], which are based on nested sequents and which capture all these
modal logics. Nested sequents are essentially trees of sequents. They naturally gen-
eralise both sequents (which are nested sequents of depth zero) and hypersequents
(which essentially are nested sequents of depth one). A crucial feature of these
proof systems is deep inference [8,14] which is the ability to apply inference rules
to formulas arbitrarily deep inside a nested sequent.

Outline. The paper is organized as follows. In Section 2 we introduce justifica-
tion logics, in Section 3 we introduce nested sequent systems, and in Section 4 we
recall Fitting’s merging technique. We use them in Section 5 to prove our central
result: the uniform realization theorem. In particular, this proves Pacuit’s con-
jecture implicit in [15] that J5 is a justification counterpart of K5. It also creates
justification counterparts for the modal logics D5, KB, DB, TB, and KB5, which,
to our knowledge, did not have justification counterparts before. In Section 6 we
go on to show that the operation of positive introspection is not necessary for the
realization of KB5 and S5, which leads to new minimal realizations for them.

2 Justification Logic

Modal formulas. Modal formulas are given by the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | 2A | 3A ,

where i ranges over natural numbers, Pi denotes a proposition, and ¬Pi denotes its
negation. Negation of formulas is defined as usual by the De Morgan laws, with
¬¬Pi being Pi. Further, A → B denotes ¬A ∨ B and ⊥ denotes Pj ∧ ¬Pj for some
fixed proposition Pj .
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Justification formulas. Justification terms, or terms for short, are given by
the grammar

t ::= ci | xi | (t · t) | (t+ t) | ! t | ? t .
The ci are called constants and the xi are called variables. The binary operators ·
and + are called application and sum respectively. Application is left-associative.
The unary operators ! and ? are called positive introspection (or proof checker) and
negative introspection respectively. Terms that do not contain variables are called
ground and are denoted by p, p1, p2 and so on, whereas arbitrary terms are denoted
by t, s, and q. We use the notation t(x1, . . . , xn) for terms that do not contain
variables other than x1, . . . , xn. Justification formulas are given by the grammar

A ::= Pi | ⊥ | (A → A) | t :A .

Negation, conjunction, and disjunction are defined as usual. Implication is right-
associative and both conjunction and disjunction bind stronger than implication.

Axiom Systems. An axiom system for the modal logic K is assumed to be
given. Extensions of system K are obtained by adding modal axioms from Figure 2
as described in Figure 3. The axiom system for the basic justification logic J consists
of the axioms and rules given in Figure 1. The AN!-rule is called axiom necessitation
with embedded positive introspection. Extensions of system J are obtained by adding
justification axioms from Figure 2 as described in Figure 3. The justification axioms
are mostly standard, except for jb, which is new. Observe that our choice of the
jb-axiom does not increase the set of operations on terms but uses the well-known
negative introspection operation. In Section 6 we will see that this is a natural
choice. The reason why the zero-premise AN!-rule is defined as a rule and not as
an axiom is to prevent it from referring to itself. We will often use the name of an
axiom system to also denote its logic, which is its set of provable formulas.

From this point on by a justification logic we mean (the logic of) either system J
or one of its extensions. Likewise, by a modal logic we mean either system K or one
of its extensions. Each justification logic has a corresponding modal logic, and vice
versa, as shown in Figure 3, with J corresponding to the modal logic K.

Remark 2.1 Traditionally, the axiomatizations of justification logics that contain
the j4-axiom had the following axiom necessitation rule, which is a simpler variant
of the AN!-rule:

A is an axiom instance
AN

ci :A
.

Since in these systems the AN!-rule is derivable, our axiomatizations produce the
same logics.

Clearly, we can turn justification formulas into modal formulas by replacing
terms with boxes, which is made formal in the next definition.

Definition 2.2 (Forgetful projection) Given a justification formula A, its for-
getful projection A◦ is defined as: P ◦i := Pi, ⊥◦ := ⊥, (A → B)◦ := A◦ → B◦, and
(t :A)◦ := 2A◦. The forgetful projection of a set of justification formulas is defined
in the obvious way.

An important fact about justification logics is that they can internalize their
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taut: A fixed complete set of propositional axioms

app: s : (A → B) → t :A → (s · t) :B

sum: s :A → (s+ t) :A and s :A → (t+ s) :A

A A → B
MP

B

A is an axiom instance
AN!

! ! . . . !︸ ︷︷ ︸
≥0

ci : · · · : ! ! ci : ! ci : ci :A

Fig. 1. The axiom system for the basic justification logic J

d: 2⊥ → ⊥ t: 2A → A b: A → 2¬2¬A
jd: t :⊥ → ⊥ jt: t :A → A jb: A → ? t : (¬t : ¬A)

4: 2A → 22A 5: ¬2A → 2¬2A
j4: t :A → ! t : t :A j5: ¬t :A → ? t : (¬t :A)

Fig. 2. Modal axioms and their corresponding justification axioms

D T KB K4 K5 DB D4 D5 TB K45 S4 KB5 D45 S5

d t b 4 5 d, b d, 4 d, 5 t, b 4, 5 t, 4 b, 4, 5 d, 4, 5 t, 4, 5

JD JT JB J4 J5 JDB JD4 JD5 JTB J45 LP JB45 JD45 JT45

jd jt jb j4 j5 jd, jb jd, j4 jd, j5 jt, jb j4, j5 jt, j4 jb, j4, j5 jd, j4, j5 jt, j4, j5

Fig. 3. Axiom systems of modal logic and of justification logic

own proofs, i.e. if A is provable, then so is t : A for some term t. This is formally
stated in the lemma below. A detailed proof can be found in Artemov [2].

Lemma 2.3 (Internalization) For any justification logic JL, if

JL ` A1 → . . . → An → B ,

then there exists a term t(x1, . . . , xn) such that for all terms s1, . . . , sn

JL ` s1 :A1 → . . . → sn :An → t(s1, . . . , sn) :B .

Note that t is ground if n = 0.

3 The Nested Sequent Calculus

Nested sequents. Nested sequents, or sequents for short, are inductively defined
as follows: the empty sequence ∅ is a nested sequent; if Σ and ∆ are nested sequents
and A is a formula, then Σ, A and Σ, [∆] are nested sequents, where the comma
denotes concatenation of sequences. The brackets in the expression [∆] are called
structural box. The corresponding formula of a sequent Γ, denoted Γ, is inductively
defined by ∅ := ⊥, Σ, A := Σ ∨ A, and Σ, [∆] := Σ ∨ 2∆. For simplicity we often
do not explicitly distinguish between a sequent and its corresponding formula. We
use the letters Γ, ∆, Λ, Ω, Π, and Σ to denote sequents.

Sequent contexts. A sequent context, or context for short, is a sequent with
(exactly) one occurrence of the symbol { }, called a hole, which does not occur
inside formulas. Contexts are denoted by Γ{ }. An inductive definition can be
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id
Γ{Pi, ¬Pi}

Γ{A,B}
∨

Γ{A ∨B}
Γ{A} Γ{B}

∧
Γ{A ∧B}

Γ{A,A}
ctr

Γ{A}
Γ{∆,Σ}

exch
Γ{Σ,∆}

Γ{[A]}
2

Γ{2A}
Γ{[A,∆]}

k
Γ{3A, [∆]}

Γ{[A]}
d

Γ{3A}
Γ{A}

t
Γ{3A}

Γ{[∆], A}
b

Γ{[∆,3A]}
Γ{[3A,∆]}

4
Γ{3A, [∆]}

Γ{[∆],3A}
5a

Γ{[∆,3A]}
Γ{[∆], [Π,3A]}

5b
Γ{[∆,3A], [Π]}

Γ{[∆, [Π,3A]]}
5c

Γ{[∆,3A, [Π]]}

Fig. 4. Rules of the nested sequent calculus

given as follows: { } is a context and if Σ{ } is a context, then so are [Σ{ }] and
∆,Σ{},Π, where ∆ and Π are sequents. The sequent Γ{∆} is obtained by replacing
the hole in Γ{ } with ∆. For example, if Γ{ } = A, [[B], { }] and ∆ = C, [D], then
Γ{∆} = A, [[B], C, [D]].

Sequent systems. Consider the inference rules in Figure 4. System SK consists
of the rules id, ∨, ∧, ctr, exch, 2, and k. Extensions of system SK are obtained by
adding further rules from Figure 4 according to Figure 3, where 5 means that all
three rules 5a, 5b, and 5c are added. Note that a name in the first row of Figure 3
now denotes both a (Hilbert-style) axiom system and a sequent system.

These sequent systems are essentially the same as the ones in [9], where their
completeness is proved, so we have the following theorem.

Theorem 3.1 (Completeness) System SK and its extensions are sound and com-
plete with respect to their corresponding modal logics (as defined by the corresponding
axiom systems).

4 Annotations and Realizations

Our goal is to turn provable formulas of a given modal logic into provable formulas
of the corresponding justification logic by replacing boxes with terms and diamonds
with variables. In order to do so we use annotations, which are indices on modalities.
Annotations have no semantical meaning but allow us to keep track of occurrences
of modal operators. We adopt Fitting’s notation from [13].

Definition 4.1 (Annotations) Annotated modal formulas, or annotated formu-
las for short, are built according to the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | 22k+1A | 32lA ,

where i, k, and l range over natural numbers. An annotated sequent (context) is
a sequent (context) in which only annotated formulas occur and all structural boxes
are annotated by odd indices. The corresponding annotated formula of an annotated
sequent Γ is defined in the obvious way, with Σ, [∆]k := Σ ∨2k∆.
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id
Γ{Pi, ¬Pi}

Γ{A,B}
∨

Γ{A ∨B}
Γ{A} Γ{B}

∧
Γ{A ∧B}

Γ{A1, A2}
ctr

Γ{A3}
Γ{∆,Σ}

exch
Γ{Σ,∆}

Γ{[A]k}
2

Γ{2kA}
Γ{[A,∆]k}

k
Γ{32mA, [∆]i}

Γ{[A]k}
d

Γ{32mA}
Γ{A}

t
Γ{32mA}

Γ{[∆]k, A}
b

Γ{[∆,32mA]i}
Γ{[32mA,∆]k}

4
Γ{32mA, [∆]i}

Γ{[∆]k,32mA}
5a

Γ{[∆,32mA]i}
Γ{[∆]k, [Π,32mA]i}

5b
Γ{[∆,32mA]l, [Π]j}

Γ{[∆, [Π,32mA]i]k}
5c

Γ{[∆,32mA, [Π]j ]l}

Fig. 5. Annotated rules of the nested sequent calculus

If A is a modal formula that is obtained from an annotated formula A′ by drop-
ping all indices on its modalities, then we call A′ an annotated version of A, and
likewise for sequents. An annotated formula or sequent is called properly annotated
if no index occurs twice in it. From now on we will always assume that an annotated
formula or sequent is properly annotated, unless stated otherwise.

Remark 4.2 Since our modal formulas are in negation normal form, in contrast
to [13] every subformula of a properly annotated formula is itself properly annotated.

Definition 4.3 (Annotated rule instance) An annotated rule instance is any
instance of a rule in Figure 5 provided that its conclusion and each of its premises
are properly annotated sequents and, in case of the ctr-rule, additionally A1, A2,
and A3 do not share indices and are annotated versions of the same modal formula.
An annotated proof is built as usual from annotated rule instances.

Remark 4.4 Note that we do not define the negation of an annotated formula. The
obvious definition, where ¬2kA is 3k¬A, does not work because it does not produce
an annotated formula. In particular, this prevents us from even formulating a cut-
rule for annotated sequents.

Lemma 4.5 (Annotating Proofs) For each sequent calculus proof P there exists
an annotated proof P ′ that is an annotated version of P, meaning that P can be
obtained from P ′ by dropping all annotations.

Proof. We take P, replace the endsequent with a properly annotated version of it,
and straightforwardly propagate the annotations upwards. 2

Now we can define realizations as functions from natural numbers to terms, with
the restriction that even numbers are mapped to variables. This restriction is often
called the normality condition.

Definition 4.6 (Realization function) A realization function r is a partial map-
ping from natural numbers to terms such that if r(2i) is defined, then r(2i) = xi. A
realization function on a given annotated formula (sequent) is one that is defined
on all indices of that formula (sequent).
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P ri := Pi (A ∨B)r := Ar ∨Br (32lA)r := ¬r(2l) : ¬Ar = ¬xl : ¬Ar

¬Pi
r := ¬Pi (A ∧B)r := Ar ∧Br (22k+1A)r := r(2k + 1) :Ar

Fig. 6. Realization of a formula

Definition 4.7 (Realization) If A is an annotated formula and r is a realization
function on it, then the justification formula Ar is inductively defined as in Figure 6.
Given an annotated sequent Γ, we define Γr as Γr.

We introduce some notation for stating restrictions on realization functions.

Definition 4.8 (diavars(A), r �A) Given an annotated formula A, we define

diavars(A) := {xk | 32k occurs in A}
r �A := r � {i | i occurs in A} ,

where f �S is the restriction of the partial function f to the set S.

The next definition is mostly standard, see, e.g., Baader and Nipkow [6].

Definition 4.9 (Substitution) A substitution, denoted by σ, is a total mapping
from variables to terms. If σ is a substitution, then σ̃ is the function that maps terms
to terms and formulas to formulas by simultaneously replacing each occurrence of a
variable x with the term σ(x). The domain of σ is dom(σ) := {x | σ(x) 6= x}, the
range of σ is range(σ) := {σ(x) | x ∈ dom(σ)}, and the variable range of σ, denoted
by vrange(σ), is the set of variables that occur in terms in range(σ). We write tσ
and Aσ to denote σ̃(t) and σ̃(A) respectively. We also write σ ◦ r for σ̃ ◦ r, where
function composition is as usual, namely (f2 ◦ f1)(n) = f2(f1(n)).

The following lemma is standard.

Lemma 4.10 (Substitution) If JL ` A for a justification logic JL, then

(i) JL ` Aσ for any substitution σ and

(ii) JL ` A[Pi 7→ B], where A[Pi 7→ B] is the result of simultaneously replacing
each occurrence of the proposition Pi with the formula B.

The following immediate facts are used in many of the proofs that follow.

Lemma 4.11 (Facts about Substitutions and Realization Functions)

(i) σ ◦ r is a realization function iff xn /∈ dom(σ) whenever r(2n) is defined.

(ii) Arσ = Aσ◦r.

(iii) If dom(r1) ∩ dom(r2) ⊆ {n | n is even}, then r1 ∪ r2 is a realization function.

(iv) If dom(σ1) ∩ dom(σ2) = ∅, then σ1 ∪ σ2 is a substitution.

(v) If σ ◦ r is a realization function, then dom(σ ◦ r) = dom(r).

(vi) If r1 ∪ r2 is a realization function, then dom(r1 ∪ r2) = dom(r1) ∪ dom(r2).

(vii) If σ1 ∪ σ2 is a substitution, then dom(σ1 ∪ σ2) = dom(σ1) ∪ dom(σ2).

(viii) dom(σ2 ◦ σ1) ⊆ dom(σ1) ∪ dom(σ2).

The following realization merging theorem is essentially Theorem 8.2 in Fit-
ting [13]. There it is formulated for LP but the proof only makes use of the oper-
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ations + and · and the Internalization Lemma. Hence, the theorem also holds for
all justification logics we consider.

Theorem 4.12 (Realization Merging) Let JL be a justification logic, A be a
properly annotated formula, and r1 and r2 be realization functions on A. Then
there exist a realization function r on A and a substitution σ such that: 1) for
any x the term σ(x) contains no variable other than x, 2) dom(σ) ⊆ diavars(A),

3) JL ` Ar1σ → Ar , and 4) JL ` Ar2σ → Ar .

(Note that it is not assumed that Ar1 or Ar2 are provable.)

The next lemma is needed because in general the formula Γ,Σ does not coincide
with the formula Γ ∨ Σ.

Lemma 4.13 (Associativity of Disjunction) For any sequents Γ and Σ and for
any realization function r, we have J ` (Σ,Γ)r ↔ Σr ∨ Γr .

5 The Realization Theorem

To prove the realization theorem for all justification logics, we first prove separate
lemmas corresponding to sequent calculus rules.

Lemma 5.1 (id-rule) Given an annotated id-instance as in Figure 5, there exists
a realization function r on its conclusion Ω such that J ` Ωr.

Proof. By induction on the build-up of Γ{ }. Case Γ{ } = { }. The empty
realization function suffices. Induction step. By induction hypothesis, there
exists a realization function r1 on Σ{Pi, ¬Pi} such that J ` Σ{Pi, ¬Pi}r1 .
Case Γ{ } = [Σ{ }]k. By the Internalization Lemma there exists a ground term p

such that J ` p : Σ{Pi, ¬Pi}r1 . Since [Σ{Pi, ¬Pi}]k is properly annotated, r :=
(r1 � Σ{Pi, ¬Pi})∪{(k, p)} is a realization function on [Σ{Pi, ¬Pi}]k by Lemma 4.11.
It follows that J ` ([Σ{Pi, ¬Pi}]k)r.
Case Γ{ } = ∆,Σ{ },Π. Let r be a realization function on ∆,Σ{Pi, ¬Pi},Π that
extends r1 � Σ{Pi, ¬Pi}. Then J ` ∆r ∨ Σ{Pi, ¬Pi}r ∨ Πr and, by Lemma 4.13,
J `

(
∆,Σ{Pi, ¬Pi},Π

)r. 2

Lemma 5.2 (∧-rule) Given an annotated ∧-instance as in Figure 5, let r1 and r2

be realization functions on its premises Λ1 and Λ2 respectively. Then there exist
a realization function r on its conclusion Ω and a substitution σ with dom(σ) ⊆
diavars(Λ1) ∪ diavars(Λ2) = diavars(Ω) such that J ` (Λ1)r1σ → (Λ2)r2σ → Ωr.

Proof. By induction on the build-up of Γ{}. Case Γ{} = {}. Let σ be the identity
substitution and let r := (r1 �A) ∪ (r2 �B). The latter is a realization function by
Lemma 4.11 because A∧B is properly annotated. Therefore, Ar1 ∧Br2 = (A ∧B)r

and J ` Ar1σ → Br2σ → (A∧B)r because it is a propositional tautology. Induction
step. By induction hypothesis there exist a realization function r′ on Σ{A ∧ B}
and a substitution σ′ with dom(σ′) ⊆ diavars(Σ{A ∧B}) such that

J ` Σ{A}r1σ′ → Σ{B}r2σ′ → Σ{A ∧B}r′ . (1)

8
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Case Γ{ } =
[
Σ{ }

]
k
. By the Internalization Lemma,

J ` r1(k)σ′ : (Σ{A}r1σ′) → r2(k)σ′ : (Σ{B}r2σ′) → t
(
r1(k)σ′, r2(k)σ′

)
: Σ{A ∧B}r′

for some term t(x, y). In other words,

J ` ([Σ{A}]k)r1σ′ → ([Σ{B}]k)r2σ′ → ([Σ{A ∧B}]k)r

for r := (r′ � Σ{A ∧ B}) ∪ {(k, t(r1(k)σ′, r2(k)σ′)}, which by Lemma 4.11 is a real-
ization function on the properly annotated sequent [Σ{A ∧B}]k.
Case Γ{ } = ∆,Σ{ },Π. Since ∆,Σ{A ∧ B},Π is properly annotated, Σ{A ∧ B}
shares no indices with ∆,Π. Thus, by Lemma 4.11, both σ′ ◦ (r1 � ∆,Π) and
σ′ ◦ (r2 � ∆,Π) are realization functions on ∆,Π. By Theorem 4.12 (Realization
Merging) there exist a realization function rm on ∆,Π and a substitution σm with
dom(σm) ⊆ diavars(∆,Π) such that

J ` (∆,Π)σ
′◦(r1 � ∆,Π)σm → (∆,Π)rm , (2)

J ` (∆,Π)σ
′◦(r2 � ∆,Π)σm → (∆,Π)rm , (3)

and, for any variable x, it is the only variable in σm(x). By Lemma 4.11 we have
(∆,Π)σ

′◦(r1 � ∆,Π)σm = (∆,Π)r1σ′σm and (∆,Π)σ
′◦(r2 � ∆,Π)σm = (∆,Π)r2σ′σm. There-

fore, (2) and (3) are identical to

J ` (∆,Π)r1σ′σm → (∆,Π)rm , (4)
J ` (∆,Π)r2σ′σm → (∆,Π)rm . (5)

From (1) by Lemma 4.10 (Substitution) it follows that

J ` Σ{A}r1σ′σm → Σ{B}r2σ′σm → Σ{A ∧B}r′σm .

From this, (4), and (5) it follows by propositional reasoning that

J ` Σ{A}r1σ′σm ∨ (∆,Π)r1σ′σm → Σ{B}r2σ′σm ∨ (∆,Π)r2σ′σm
→ Σ{A ∧B}r′σm ∨ (∆,Π)rm . (6)

Since dom(σm) ⊆ diavars(∆,Π), it follows by Lemma 4.11 that σm ◦ (r′ � Σ{A ∧B})
is a realization function on Σ{A ∧ B}. Again by Lemma 4.11, we conclude that
r := (σm ◦ (r′ � Σ{A∧B}))∪ (rm � ∆,Π) is a realization function on ∆,Σ{A∧B},Π.
And since Σ{A ∧ B}r′ � Σ{A∧B}σm = Σ{A ∧ B}σm◦(r′ � Σ{A∧B}) by Lemma 4.11, we
can rewrite (6) as

J `
(
Σ{A} ∨ (∆,Π)

)r1σ →
(
Σ{B} ∨ (∆,Π)

)r2σ →
(
Σ{A ∧B} ∨ (∆,Π)

)r (7)

for σ := σm ◦ σ′ with dom(σ) ⊆ dom(σ′) ∪ dom(σm) ⊆ diavars(∆,Σ{A ∧ B},Π).
Finally, (7) is by Lemma 4.13 propositionally equivalent to

J ` (∆,Σ{A},Π)r1σ → (∆,Σ{B},Π)r2σ → (∆,Σ{A ∧B},Π)r .
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2

The proof of the following lemma is in Appendix A.

Lemma 5.3 (ctr-rule) Given an annotated ctr-instance as in Figure 5, let r1 be a
realization function on its premise Λ. Then there exist 1) a realization function r

on its conclusion Ω and 2) a substitution σ with dom(σ) ⊆ diavars(Λ) such that
J ` Λr1σ → Ωr.

Lemma 5.4 (∨- and exch-rule) Given an annotated ρ-instance with ρ ∈ {∨, exch}
as in Figure 5, let r1 be a realization function on its premise Λ. Then there exists
a realization function r on its conclusion Ω such that J ` Λr1 → Ωr.

Proof. By induction on the build-up of Γ{ }. In the base case Γ{ } = { } it suffices
to take r := r1 � Ω for either rule. Indeed, A,B = A ∨ B = A ∨B for ρ = ∨. For
ρ = exch, the desired statement follows from Lemma 4.13. The arguments for the
induction steps are the same as in the proof of Lemma 5.3, given in Appendix A,
except that here the substitution is the identity substitution. 2

Lemma 5.5 (k-rule) Given an annotated k-instance as in Figure 5, let r1 be a
realization function on its premise Λ. Then there exists a realization function r on
its conclusion Ω such that J ` Λr1 → Ωr.

Proof. By induction on the build-up of Γ{}. Case Γ{} = {}. For the propositional
tautology (A,∆)r1 → ¬Ar1 → ∆r1 , by the Internalization Lemma there exists a
term t(x, y) such that J ` r1(k) : (A,∆)r1 → xm : ¬Ar1 → t(r1(k), xm) : ∆r1 . It
follows by propositional reasoning that

J ` r1(k) : (A,∆)r1 → ¬xm : ¬Ar1 ∨ t(r1(k), xm) : ∆r1 , which is

J `
(
[A,∆]k

)r1 → (32mA)r1 ∨ t(r1(k), xm) : ∆r1 .

For r := (r1 � A,∆) ∪ {(i, t(r1(k), xm)), (2m,xm)} this is identical to

J `
(
[A,∆]k

)r1 → (32mA, [∆]i)r .

The induction steps are the same as in Lemma 5.4. 2

In order to realize the modal rules 5b and 5c, we will use realizations of theorems
2(2A → A) and 2(¬22A → ¬2A) of K5. They are provided by the following two
auxiliary lemmas. We have to omit the proofs for space reasons.

Lemma 5.6 (Internalized Factivity) There is a term t(x) such that for any
term s and any formula A we have that J5 ` t(s) : (s :A → A).

Lemma 5.7 (Internalized Positive Introspection) There are terms t1(x) and
t2(x) such that J5 ` t1(t) : (¬t2(t) : t :A → ¬t :A) for any term t and any formula A.

Proofs require further work before inclusion into the paper

Proof. Since ¬x :P → ?x :¬x :P is an instance of j5, by the Internalization Lemma
there exists a ground term p1 such that J5 ` p1 :

(
¬x :P → ?x :¬x :P

)
. By Lemma ??

and MP,
J5 ` ¬(dd(p1) · ? ?x) : ¬¬x : P → ¬ ? ?x : ¬ ?x : ¬x : P . (8)

10
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By a tautology ¬¬Q → Q and the Internalization and Substitution Lemmas, there
exists a term s2(x) such that J5 ` (dd(p1) · ? ? t) : ¬¬t :A → s2(dd(p1) · ? ? t) : t :A.
From (8) by propositional reasoning J5 ` ¬s2(dd(p1) ·? ? t):t :A → ¬ ? ? t :¬ ? t :¬t :A.
Then, for a tautology by the Internalization and Substitution Lemmas, there exists
a ground term p2 such that

J5 ` p2 :
(
¬s2(dd(p1) · ? ? t) : t :A → ¬ ? ? t : ¬ ? t : ¬t :A

)
. (9)

By the Internalization Lemma and the contrapositive of ¬ ? t :¬t :A → ? ? t :¬ ? t :¬t :A
(j5) there exists a ground term p3 s.t.

J5 ` p3 :
(
¬ ? ? t : ¬ ? t : ¬t :A → ? t : ¬t :A

)
. (10)

By Lemma 5.6 there exists a term s3(x) with all variables indicated such that

J5 ` s3(? t) :
(
? t : ¬t :A → ¬t :A

)
. (11)

By (10), (11) and Lemma ?? (Syllogism) there exists a term s4(x, y) with all vari-
ables indicated such that

J5 ` s4(p3, s3(? t)) :
(
¬ ? ? t : ¬ ? t : ¬t :A → ¬t :A

)
. (12)

Similarly, by (9), (12) and Lemma ?? there exists a term s5(x, y) such that

s5(p2, s4(p3, s3(? t))) :
(
¬s2(dd(p1) · ? ? t) : t :A → ¬t :A

)
.

Hence the desired terms are t1(t) = s5(p2, s4(p3, s3(? t))) and t2(t) = s2(dd(p1) ·
? ? t). 2

The following lemma covers the remaining rules.

Lemma 5.8 (Modal Rules) Given an annotated ρ-instance with ρ ∈ {d, t, b, 4,
5a, 5b, 5c} as given in Figure 5, let r1 be a realization function on its premise Λ.
Then there is a realization function r on its conclusion Ω such that Jρ ` Λr1 → Ωr,
where by Jd we mean JD, and so on, except for ρ ∈ {5a, 5b, 5c} where we mean J5.

Proof. By induction on the build-up of Γ{ }. For the base case Γ{ } = { } we need
to consider each rule ρ in turn.
Subcases ρ = d, t, 4 are similar to the k-rule and are omitted for space reasons.
Subcase ρ = b. Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is a propositional tautology, by the
Internalization Lemma there exists a term t1(y) such that

JB ` r1(k) : ∆r1 → t1(r1(k)) : (∆r1 ∨ ¬xm : ¬Ar1) . (13)

Similarly, for a propositional tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 , there exists
a term t2(x) such that

JB ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (14)

11
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It follows from (13) and (14) by axiom sum and propositional reasoning that

JB ` r1(k) : ∆r1 ∨ ?xm : ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1)

for t := t1(r1(k)) + t2(?xm). Finally, from an instance Ar1 → ?xm : ¬xm : ¬Ar1 of
axiom jb it follows that JB ` r1(k) : ∆r1 ∨ Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1). Hence the
desired realization function is r := (r1 � ∆, A) ∪ {(i, t), (2m,xm)}.
Subcases ρ = 5a, 5c can be found in Appendix B.
Subcase ρ = 5b. By Lemma 5.7 there exist terms t1(x) and t2(x) such that
J5 ` t1(xm) : (¬t2(xm) : xm : ¬Ar1 → ¬xm : ¬Ar1). Thus, by app and MP,

J5 ` ? t2(xm) : ¬t2(xm) : xm : ¬Ar1 → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 .

From an instance ¬t2(xm) :xm :¬Ar1 → ? t2(xm) :¬t2(xm) :xm :¬Ar1 of j5 it follows:

J5 ` ¬t2(xm) : xm : ¬Ar1 → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 . (15)

By a propositional tautology and the Internalization Lemma applied to it,

J5 ` p1 :
(
xm : ¬Ar1 → Πr1 ∨ ¬xm : ¬Ar1 → Πr1

)
for some ground term p1. Thus, by app and MP,

J5 ` t2(xm) : xm : ¬Ar1 → (p1 · t2(xm)) : (Πr1 ∨ ¬xm : ¬Ar1 → Πr1) .

Again by app and propositional reasoning,

J5 ` t2(xm) : xm : ¬Ar1 → r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → (p1 · t2(xm) · r1(i)) : Πr1 ,

which is propositionally equivalent to

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ¬t2(xm) : xm : ¬Ar1 ∨ s : Πr1

for s := p1 · t2(xm) · r1(i). From this and (15) by propositional reasoning we obtain

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 ∨ s : Πr1 . (16)

By the Internalization Lemma for the tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 and
propositional reasoning, there is a term t3(x) such that

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →

t3(t1(xm) · ? t2(xm)) : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (17)

Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is a propositional tautology, by the Internalization
Lemma there is a term t4(x) such that J5 ` r1(k):∆r1 → t4(r1(k)):(∆r1 ∨¬xm :¬Ar1).
Therefore, by axiom sum,

J5 ` r1(k) : ∆r1 → t : (∆r1 ∨ ¬xm : ¬Ar1) (18)

12
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for t := t3(t1(xm) · ? t2(xm)) + t4(r1(k)). Similarly, by (17) and sum,

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (19)

Finally by propositional reasoning from (18) and (19),

J5 ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

Hence the desired realization function is r := (r1 � ∆,32mA,Π) ∪ {(l, t), (j, s)}.
This completes the proof of the base case of the induction. The induction steps

are the same as in Lemma 5.4. 2

Now we are ready to prove our main result.

Theorem 5.9 (Realization) For any modal logic ML and its corresponding jus-
tification logic JL we have that ML = JL◦.

Proof. The inclusion JL◦ ⊆ ML is easy since forgetful projections of axioms and
rules of any justification logic can easily be derived in the corresponding modal
logic. So we now turn to the more interesting opposite inclusion. It follows from
Theorem 3.1 (Completeness), Lemma 4.5 (Annotating Proofs), and the following
Claim. Let S be the sequent system for a modal logic ML and let P be an annotated
proof with the endsequent ∆ such that the unannotated version of P is a sequent
calculus proof in S. Then there exists a realization function r on ∆ such that
JL ` ∆r for the justification logic JL that corresponds to ML.

We prove the claim by induction on the depth of P by case analysis on the
lowermost rule.
Case id. The claim follows from Lemma 5.1.
Cases ∨- and exch-rules. The claim follows from the induction hypothesis and
Lemma 5.4.

Case
Γ{A} Γ{B}

∧
Γ{A ∧B}

. By induction hypothesis there exist realization functions

r1 and r2 such that J ` Γ{A}r1 and J ` Γ{B}r2 . By Lemma 5.2, there exist
a realization function r on the conclusion Γ{A ∧ B} and a substitution σ such
that J ` Γ{A}r1σ → Γ{B}r2σ → Γ{A ∧ B}r. By Lemma 4.10, J ` Γ{A}r1σ and
J ` Γ{B}r2σ, hence, J ` Γ{A ∧B}r.
Case ctr-rule. The claim follows from the induction hypothesis, Lemma 5.3, and
Lemma 4.10 (Substitution).
Case 2-rule. The claim immediately follows from the induction hypothesis.
Case k-rule. The claim follows from the induction hypothesis and Lemma 5.5.
Cases for rules in {d, t, b, 4, 5a, 5b, 5c}. The claim follows from the induction
hypothesis and Lemma 5.8. 2

Remark 5.10 Fitting’s Merging Theorem from [13] states a stronger result than
used in this paper, namely that the proofs can be made injective. An injective proof
uses each constant for only one axiom instance. We are confident that the results
of this paper can also be extended to injective proofs.

13
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6 A Strengthened Realization Theorem for S5 and KB5

We now introduce two new justification logics: JT5 and JB5. The axiom systems
for them are obtained from the axiom systems for JT45 and JB45 respectively by
removing the operator ! from the language and, therefore, dropping j4 and replac-
ing AN! with AN from Remark 2.1. Note that, although S5 = KT5 = KT45 and
KB5 = KB45, obviously JT5 6= JT45 and JB5 6= JB45 simply because the languages
are different. The proof of the Internalization Lemma relies on the AN!-rule, which
is not admissible in either JT5 or JB5. Thus, we need to show the existence of
a term dpi(x) that plays the role of !x for these two logics, where dpi stands for
derived positive introspection.

Lemma 6.1 (Positive Introspection in JB5 and JT5) There is a term dpi(x)
such that for any term t and any formula A

JB5 ` t :A → dpi(t) : t :A and JT5 ` t :A → dpi(t) : t :A .

Proof. Since j5 is an axiom of JB5, by AN there exists a constant ci such that

JB5 ` ci :
(
¬y : P → ? y : ¬y : P

)
(20)

for some proposition P and variable y. It can be shown using AN, app, and propo-
sitional reasoning that there exists a ground term p such that

JB5 ` p :
(
(¬y : P → ? y : ¬y : P ) → ¬ ? y : ¬y : P → y : P

)
.

From this and (20) by app and MP, we have JB5 ` (p · ci) : (¬ ? y : ¬y : P → y : P ).
Again by app and MP, we have JB5 ` ? ? y : ¬ ? y : ¬y :P → (p · ci · ? ? y) : y :P . Since

y : P → ? ? y : ¬ ? y : ¬y : P (21)

is an instance of axiom jb, by propositional reasoning

JB5 ` y : P → dpi(y) : y : P . (22)

for dpi(y) := p · ci · ? ? y. We now show that (21) is provable in JT5. Indeed,
¬ ? y :¬y :P → ? ? y :¬ ? y :¬y :P is an instance of j5. Hence, (21) follows by syllogism
with y :P → ¬ ? y :¬y :P , which is a contraposition of an instance of jt. Thus, (22) also
holds if JB5 is replaced with JT5. The statement of the lemma for either logic now
follows from (22) by the Substitution Lemma, which also holds for these logics. 2

Because of Lemma 6.1, using dpi(t) instead of ! t we can adapt the standard proof
of the Internalization Lemma to JT5 and JB5. As a consequence, Theorem 4.12 as
well as Lemmas 5.1, 5.2, 5.3, 5.4, 5.5, and 5.8 also hold for JT5 and JB5. The proofs
apply literally except that in the case of the 4-rule in Lemma 5.8, we use Lemma 6.1
instead of axiom j4.

It follows from the Realization Theorem for JT45 and JB45 that JT5◦ ⊆ S5 and
JB5◦ ⊆ KB5. The opposite inclusions can be shown by literally repeating the proof
of the Realization Theorem.

Theorem 6.2 (Strengthened Realization) S5 = JT5◦ and KB5 = JB5◦.

14
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7 Conclusion

We have used cut-free nested sequent systems to constructively realize each of our
15 modal logics. In doing so, we have reproved in a uniform way several known
realization theorems and have realized logics that did not have justification coun-
terparts before. For two logics, we have also shown that the positive introspection
operation is superfluous.

For now we have realized these logics. However, some of them have more than
one axiomatization. Justification counterparts of different axiomatizations of the
same modal logic can be different. Thus, it is a natural next step for us to try to
obtain realizations for all the 32 different axiomatizations of these 15 logics. We
believe that nested sequent systems with structural modal rules [9,10], which are
modular in a certain sense, will allow us to do this.

Another direction for future research is to look for cut-free proof systems for all
our justification logics. Currently many justification logics lack such proof systems,
and the problems in obtaining them seem to be the same as for modal logics. Nested
sequents have provided cut-free proof systems for all our modal logics, and thus we
believe they can also provide cut-free proof systems for justification logics.
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[10] Brünnler, K. and L. Straßburger, Modular sequent systems for modal logic, in: M. Giese and A. Waaler,
editors, Proceedings of TABLEAUX 2009, Lecture Notes in Artificial Intelligence 5607, Springer, 2009
pp. 152–166.
URL http://www.iam.unibe.ch/til/publications/pubitems/pdfs/bstr09.pdf

15

http://www.cs.gc.cuny.edu/~sartemov/publications/MSI95-29.ps
http://www.math.ucla.edu/~asl/bsl/0701/0701-001.ps
http://www.cs.gc.cuny.edu/~sartemov/publications/S5LP.ps
http://dx.doi.org/10.1145/1562814.1562821
http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/til/publications/pubitems/pdfs/bru09.pdf
http://www.iam.unibe.ch/til/publications/pubitems/pdfs/bstr09.pdf
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A The Proof of Lemma 5.3 (Contraction)

Proof. By induction on the build-up of Γ{}. In order to demonstrate the base case
Γ{ } = { } a subinduction on the build-up of the common unannotated version A

of formulas A1, A2, and A3 is employed. The statement proved by subinduction
is the same as in the main induction with an extra restriction on σ, namely that
vrange(σ) ⊆ diavars(Ω).
Subinduction base: A = P or A = ¬P . The identity substitution σ and r := ∅
suffice.

To prove the step of the subinduction the following cases have to be considered:
Subinduction case A = B ∨ C. The annotated formulas A1 = B1 ∨ C1, A2 =
B2 ∨C2, and A3 = B3 ∨C3 do not share indices. By subinduction hypothesis, there
exist realization functions r′B on B3 and r′C on C3, as well as substitutions σB with
dom(σB) ⊆ diavars(B1 ∨B2) and σC with dom(σC) ⊆ diavars(C1 ∨ C2) such that

J ` (B1 ∨B2)r1σB → (B3)r
′
B and J ` (C1 ∨ C2)r1σC → (C3)r

′
C .

Also, we have that vrange(σB) ⊆ diavars(B3) and vrange(σC) ⊆ diavars(C3). By
Lemma 4.11, σ := σB ∪σC is a substitution with dom(σ) ⊆ diavars(Λ). Further, for
restrictions rB := r′B �B3 and rC := r′C �C3, both σC ◦rB and σB ◦rC are realization
functions on B3 and C3 respectively. Since (B3)r

′
B = (B3)rB and (C3)r

′
C = (C3)rC ,

by Lemma 4.10

J ` (B1 ∨B2)r1σBσC → (B3)rBσC and J ` (C1 ∨ C2)r1σCσB → (C3)rCσB .

Note that σC has no effect on any term σB(x) ∈ range(σB) because σB(x) only con-
tains variables from diavars(B3), which is disjoint from diavars(C1∨C2) ⊇ dom(σC).
Thus, (B1 ∨B2)r1σBσC = (B1 ∨B2)r1σ. Similarly, (C1 ∨C2)r1σCσB = (C1 ∨C2)r1σ.
From this and Lemma 4.11 it follows that

J ` (B1 ∨B2)r1σ → (B3)σC◦rB and J ` (C1 ∨ C2)r1σ → (C3)σB◦rC .

Finally, by propositional reasoning,

J `
(
(B1 ∨ C1) ∨ (B2 ∨ C2)

)r1σ → (B3)σC◦rB ∨ (C3)σB◦rC .

In other words, J ` Λr1σ → Ωr for r := (σC ◦ rB)∪ (σB ◦ rC), which by Lemma 4.11
is a realization function on Ω = B3 ∨ C3.
Subinduction case A = B ∧ C is analogous to B ∨ C.
Subinduction case A = 3B. The annotated formulas A1 = 32kB1, A2 = 32mB2,
and A3 = 32nB3 do not share indices. By induction hypothesis, there are a real-
ization function r′B on B3 and a substitution σB with dom(σB) ⊆ diavars(B1 ∨B2)
such that J ` (B1 ∨ B2)r1σB → (B3)r

′
B . In addition, vrange(σB) ⊆ diavars(B3). By

propositional reasoning,

J ` ¬(B3)r
′
B → ¬(B1)r1σB and J ` ¬(B3)r

′
B → ¬(B2)r1σB .
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By the Internalization Lemma, there exist terms t1(y) and t2(y) such that

J ` xn :¬(B3)r
′
B → t1(xn):¬(B1)r1σB and J ` xn :¬(B3)r

′
B → t2(xn):¬(B2)r1σB .

It then follows by propositional reasoning that

J ` ¬t1(xn) : ¬(B1)r1σB ∨ ¬t2(xn) : ¬(B2)r1σB → ¬xn : ¬(B3)r
′
B . (A.1)

Since dom(σB) ⊆ diavars(B1 ∨B2) 63 xn, the substitution σB does not affect xn and,
hence, (A.1) is identical to

J `
(
¬t1(xn) : ¬(B1)r1 ∨ ¬t2(xn) : ¬(B2)r1

)
σB → ¬xn : ¬(B3)r

′
B .

Let σ′ := {(xk, t1(xn)), (xm, t2(xn))} ∪ {(xi, xi) | i /∈ {k,m}}. By Lemma 4.10,

J `
(
¬t1(xn) : ¬(B1)r1 ∨ ¬t2(xn) : ¬(B2)r1

)
σBσ

′ → ¬xn : ¬(B3)r
′
Bσ′ . (A.2)

Again let rB := r′B �B3. Since 2k and 2m do not occur in B3, σ′ ◦rB is a realization
function on B3 by Lemma 4.11. Let r := (σ′ ◦ rB) ∪ {(2n, xn)}. Clearly, it is a
realization function on 32nB3. Since σB affects neither xk nor xm, (A.2) becomes

J ` (32kB1 ∨32mB2)r1σ → (32nB3)r

for σ := σ′ ◦ σB. In other words, J ` Λr1σ → Ωr. It remains to note that,
by Lemma 4.11, dom(σ) ⊆ dom(σB) ∪ dom(σ′) ⊆ diavars(32kB1 ∨ 32mB2) and
vrange(σ) ⊆ diavars(B3) ∪ {xn} = diavars(32nB3).
Subinduction case A = 2B. The annotated formulas A1 = 2kB1, A2 = 2lB2,
and A3 = 2mB3 do not share indices. By induction hypothesis, there exist a
realization function rB on B3 and a substitution σ with dom(σ) ⊆ diavars(B1 ∨B2)
such that J ` (B1 ∨ B2)r1σ → (B3)rB . In addition, vrange(σ) ⊆ diavars(B3). By
propositional reasoning and the Internalization Lemma, there exist terms t1(y) and
t2(y) such that

J ` r1(k)σ : (B1)r1σ → t1(r1(k)σ) : (B3)rB ,

J ` r1(l)σ : (B2)r1σ → t2(r1(l)σ) : (B3)rB .

By axiom sum, for s := t1(r1(k)σ) + t2(r1(l)σ),

J ` r1(k)σ : (B1)r1σ → s : (B3)rB and J ` r1(l)σ : (B2)r1σ → s : (B3)rB .

Thus, by propositional reasoning,

J ` (2kB1 ∨2lB2)r1σ → (2mB3)r

for r := (rB �B3) ∪ {(m, s)}. It is clear that r is a realization function on 2mB3.
This completes the proof by subinduction of the base case Γ{ } = { }.
Induction step. By induction hypothesis, there exist a realization function r on
Σ{A3} and a substitution σ with dom(σ) ⊆ diavars(Σ{A1, A2}) such that

J ` Σ{A1, A2}r1σ → Σ{A3}r .
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Case Γ{ } = [Σ{ }]k. By the Internalization Lemma,

J ` r1(k)σ :
(
Σ{A1, A2}r1σ

)
→ t(r1(k)σ) : Σ{A3}r

for some term t(x). In other words, the desired result

J `
(
[Σ{A1, A2}]k

)r1σ → t
(
r1(k)σ

)
: Σ{A3}r ,

is achieved for a realization function r′ := (r � Σ{A3}) ∪ {(k, t(r1(k)σ))} and the
same substitution σ.
Case Γ{ } = ∆,Σ{ },Π. By propositional reasoning,

J ` ∆r1σ ∨ Σ{A1, A2}r1σ ∨Πr1σ → ∆r1σ ∨ Σ{A3}r ∨Πr1σ .

Since dom(σ) ⊆ diavars(Σ{A1, A2}), by Lemma 4.11, σ ◦ (r1 � ∆,Π) is a realization
function on ∆,Π. Then for r′ :=

(
σ ◦ (r1 � ∆,Π)

)
∪ (r � Σ{A3}),

J ` (∆ ∨ Σ{A1, A2} ∨Π)r1σ → (∆ ∨ Σ{A3} ∨Π)r
′

.

It remains to apply Lemma 4.13 to obtain the desired result

J ` (∆,Σ{A1, A2},Π)r1σ → (∆,Σ{A3},Π)r
′

for the realization function r′ and the same substitution σ.
Note that induction steps never alter σ. 2

B The Cases for the 5a and 5c Rules in Lemma 5.8

Subcase ρ = 5a. By a propositional tautology ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 and the
Internalization Lemma there exists a term t1(x) such that

J5 ` r1(k) : ∆r1 → t1(r1(k)) :
(
∆r1 ∨ ¬xm : ¬Ar1

)
. (B.1)

Similarly, for a tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 there is t2(y) such that

J5 ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From an instance ¬xm : ¬Ar1 → ?xm : ¬xm : ¬Ar1 of j5 by propositional reasoning

J5 ` ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (B.2)

It follows from (B.1) and (B.2) by axiom sum and propositional reasoning that

J5 ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1).

for t := t1(r1(k)) + t2(?xm). In other words,

J5 ` ([∆]k,32mA)r1 → ([∆,32mA]i)r

19
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for r := (r1 � ∆,32mA) ∪ {(i, t)}.
Subcase ρ = 5c. The existence of terms t1(xm), t2(xm), and s that satisfy (16)
follows as in the subcase of ρ = 5b. Thus, by propositional reasoning,

J5 ` ∆r1 ∨r1(i) :(Πr1 ∨¬xm :¬Ar1) → ∆r1 ∨(t1(xm) ·? t2(xm)) :¬xm :¬Ar1 ∨s :Πr1 .

By the Internalization Lemma there exists a term s1(x) such that

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→

s1(r1(k)) :
(
∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1

)
, (B.3)

where q1 := t1(xm) · ? t2(xm) in the above formula. By Lemma 5.6 there exists a
term t(x) such that

J5 ` t(q1) :
(
q1 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1

)
. (B.4)

By a propositional tautology and the Internalization Lemma applied to it,

J5 ` p2 :
((
q1 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1

)
→

∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1
)

for some ground term p2. From this and (B.4) by app and MP it follows that

J5 ` (p2 · t(q1)) :
(
∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1

)
.

It follows by app and MP that

J5 ` s1(r1(k)) : (∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1) → q3 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

for q3 := p2 · t(q1) · s1(r1(k)). By propositional reasoning with (B.3) it follows that

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→ q3 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

Hence the desired realization function is r := (r1 � ∆,32mA,Π) ∪ {(j, s), (l, q3)}.
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