
A Logic of Blockchain Updates

Kai Brünnler1, Dandolo Flumini2, and Thomas Studer3

1 Bern University of Applied Sciences, Switzerland, kai.bruennler@bfh.ch
2 ZHAW School of Engineering, Switzerland, dandolo.flumini@zhaw.ch

3 University of Bern, Switzerland, tstuder@inf.unibe.ch

Abstract. Blockchains are distributed data structures that are used
to achieve consensus in systems for cryptocurrencies (like Bitcoin) or
smart contracts (like Ethereum). Although blockchains gained a lot of
popularity recently, there are only few logic-based models for blockchains
available. We introduce BCL, a dynamic logic to reason about blockchain
updates, and show that BCL is sound and complete with respect to a
simple blockchain model.

Keywords: blockchain, modal logic, dynamic epistemic logic

1 Introduction

Bitcoin [16] is a cryptocurrency that uses peer-to-peer technology
to support direct user-to-user transactions without an intermedi-
ary such as a bank or credit card company. In order to prevent
double spending, which is a common issue in systems without cen-
tral control, Bitcoin maintains a complete and public record of all
transactions at each node in the network. This ledger is called the
blockchain.

The blockchain is essentially a growing sequence of blocks, which
contain approved transactions and a cryptographic hash of the pre-
vious block in the sequence. Because the blockchain is stored locally
at each node, any update to it has to be propagated to the entire
network. Nodes that receive a transaction [1, 18]

1. first verify its validity (i.e., whether it is compatible with all pre-
ceeding transactions);

2. if it is valid, then it is added to the blockchain and
3. sent to all other nodes.

Blockchain technology, as a general solution to the Byzantine Gen-
erals’ Problem [15], is now not only used for financial transactions
but also for many other applications like, e.g., smart contracts [5].

Herlihy and Moir [11] propose to develop a logic of accountability
to design and verify blockchain systems. In particular, they discuss
blockchain scenarios to test (i) logics of authorization, (ii) logics of
concurrency, and (iii) logics of incentives.

Halpern and Pass [10] provide a characterization of agents’ knowl-
edge when running a blockchain protocol using a variant of common
knowledge.

In the present paper, we are not interested in accountability or
aspects of common knowledge. We study the local, single agent per-
spective of a blockchain. That is we investigate steps 1. and 2. of the
above procedure for receiving a transaction. Our approach is inspired
by dynamic epistemic logic [7]. A given state of the local blockchain
entails knowledge about the transactions that have taken place. We
ask: how does this knowledge change when a new block is received
that might be added to the blockchain? We develop a dynamic logic,
BCL, with a semantics that is based on a blockchain model. The up-
date operators of BCL are interpreted as receiving new blocks. It is
the aim of this paper to investigate the dynamics of local blockchain
updates.

The deductive system for BCL includes reduction axioms that
make it possible to establish completeness by a reduction to the
update-free case [13]. However, since blockchain updates are only
performed if certain consistency conditions are satisfied, we use con-
ditional reduction axioms similar to the ones developed by Steiner
to model consistency preserving updates [19]. Moreover, unlike tra-
ditional public announcements [7], blockchain updates cannot lead
to an inconsistent state, i.e., updates are total, like in [20].

We do not base BCL on an existing blockchain implementation
but use a very simple model. First of all, the blockchain is a sequence
of propositional formulas. Further, we maintain a list of provisional
updates. Our blocks consist of two parts: a sequence number (called
the index of the block) and a propositional formula. If a block is
received, then the following case distinction is performed where i is
the index of the block and l is the current length of the blockchain:

1. i ≤ l. The block is ignored.

2. i = l + 1. If the formula of the block is consistent with the
blockchain, then it is added to the blockchain; otherwise the

block is ignored. If the blockchain has been extended, then this
procedure is performed also with the blocks stored in the list of
provisional updates.

3. i > l + 1. The block is added to the list of provisional updates.

Although this is a simple model, it features two important logical
properties of blockchains: consistency must be preserved and blocks
may be received in the wrong order, in which case they are stored
separately until the missing blocks have been received.

The main contribution of our paper from the point of view of
dynamic epistemic logic is that we maintain a list of provisional
updates. That means we support updates that do not have an im-
mediate effect but that may lead to a belief change later only after
certain other updates have been performed. BCL is the first logic
that features provisional updates of this kind.

The paper is organized as follows. The next section introduces
our blockchain model, the language of BCL, and its semantics. In
Section 3, we introduce a deductive system for BCL. We establish
soundness of BCL in Section 4. In Section 5, we show a normal form
theorem for BCL, which is used in Section 6 to prove completeness of
BCL. The final section studies some key principles of the dynamics
of our blockchain logic and discusses future work.

We will only mention the lemmas that are needed to establish the
main theorems of this paper; but we do not give any proofs because
of lack of space. Detailed proofs can be found in the accompanying
arXiv paper [3].

Acknowledgements
We would like to thank Eveline Lehmann and Nenad Savic for care-
fully reading a previous version of this paper.

This work was partially supported by the SNSF grant 165549.

2 A simple blockchain logic

The set of all natural numbers is denoted by N := {0, 1, 2, . . .}. The
set of positive natural numbers is denoted by N+ := {1, 2, . . .}. We
use ω for the least ordinal such that ω > n, for all n ∈ N.

Let σ = 〈σ1, . . . , σn〉 be a finite sequence. We define its length
by len(σ) := n. For an infinite sequence σ = 〈σ1, σ2, . . .〉 we set

len(σ) := ω. For a (finite or infinite) sequence σ = 〈σ1, σ2, . . . , σi, . . .〉
we set (σ)i := σi. The empty sequence is denoted by 〈〉 and we set
len(〈〉) := 0. We can append x to a finite sequence σ := 〈σ1, . . . , σn〉,
in symbols we set σ ◦ x := 〈σ1, . . . , σn, x〉. We will also need the set
of all components of a sequence σ and define

set(σ) := {x | there is an i such that x = σi}.

In particular, we have set(〈〉) := ∅. Moreover, we use the shorthand
x ∈ σ for x ∈ set(σ).

We start with a countable set of atomic propositions AP :=
{P0, P1, . . .}. The set of formulas Lcl of classical propositional logic
is given by the following grammar

A ::= ⊥ | P | A→ A ,

where P ∈ AP .

In order to introduce the language LB for blockchain logic, we
need another countable set of special atomic propositions AQ :=
{Q1, Q2, . . .} that is disjoint with AP . We will use these special
propositions later to keep track of the length of the blockchain. The
formulas of LB are now given by the grammar

F ::= ⊥ | P | Q | F → F | 2A | [i, A]F ,

where P ∈ AP , Q ∈ AQ, A ∈ Lcl, and i ∈ N+. The operators of the
form [i, A] are called blockchain updates (or simply updates).

Note that in LB we cannot express higher-order knowledge, i.e.,
we can only express knowledge about propositional facts but not
knowledge about knowledge of such facts.

For all languages in this paper, we define further Boolean con-
nectives (e.g. for negation, conjunction, and disjunction) as usual.
Moreover, we assume that unary connectives bind stronger than bi-
nary ones.

For Lcl we use the semantics of classical propositional logic. A
valuation v is a subset of AP and we define the truth of an Lcl-
formula A under v, in symbols v |= A as usual. For a set Γ of
Lcl-formulas, we write v |= Γ if v |= A for all A ∈ Γ . The set Γ

is satisfiable if there is a valuation v such that v |= Γ . We say Γ
entails A, in symbols Γ |= A, if for each valuation v we have

v |= Γ implies v |= A.

Now we introduce the blockchain semantics for LB.

Definition 1. A block is a pair [i, A] where A is an Lcl-formula and
i ∈ N+. We call i the index and A the formula of the block [i, A].
We define functions ind and fml by ind[i, A] := i and fml[i, A] := A.

Definition 2. A model M := (I,BC,PU, v) is a quadruple where

1. I is a set of Lcl-formulas
2. BC is a sequence of Lcl-formulas
3. PU is a finite sequence of blocks
4. v is a valuation, i.e. v ⊆ AP

such that

I ∪ set(BC) is satisfiable (1)

and

for each block [i, A] ∈ PU we have i > len(BC) + 1. (2)

The components of a model (I,BC,PU, v) have the following meaning:

1. I models initial background knowledge.
2. BC is the blockchain.
3. PU stands for provisional updates. The sequence PU consists of

those blocks that have been announced but that could not yet be
added to the blockchain because their index is too high. Maybe
they will be added to BC later (i.e., after the missing blocks have
been added).

4. v states which atomic propositions are true.

We need some auxiliary definition in order to precisely describe
the blockchain dynamics.

Definition 3. 1. Let PU be a finite sequence of blocks. Then we let
find(i,PU) be the least j ∈ N+ such that there is an Lcl-formula
A with [i, A] = (PU)j.

2. Let σ = 〈σ1, . . . , σi−1, σi, σi+1, . . .〉 be a sequence. We set

remove(i, σ) := 〈σ1, . . . , σi−1, σi+1, . . .〉.

3. Given a set of Lcl-formulas I, a sequence of Lcl-formulas BC,
and a finite sequence of blocks PU, then the chain completion
complete(I,BC,PU) is computed according to Algorithm 1.

Algorithm 1 Chain Completion Algorithm: complete
Input: (I,BC,PU)
1: n← len(BC) + 1
2: while [n,A] ∈ PU for some formula A do
3: i← find(n,PU)
4: B ← fml((PU)i)
5: remove(i,PU)
6: if I ∪ set(BC) ∪ {B} is satisfiable then
7: BC← BC ◦B
8: n← len(BC) + 1
9: end if

10: end while
11: for i ∈ len(PU), . . . , 1 do
12: if ind((PU)i) < n then
13: remove(i,PU)
14: end if
15: end for
16: return (BC,PU)

Let us comment on the chain completion procedure. The numbers
refer to the lines in Algorithm 1.

1: n is the index a block must contain so that it could be
added to the blockchain BC.

2: ’[n,A] ∈ PU for some formula A’ means that PU contains
a block that could be added to BC.

3–5: Find the next formula B that could be added to BC and
remove the corresponding block from PU.

6: ’I∪ set(BC)∪ {B} is satisfiable’ means that B is consistent
with the current belief. This test guarantees that (1) will
always be satisfied.

7,8: Update the blockchain BC with B.

11–15: Remove all blocks from PU whose index is less than or
equal to the current length of the blockchain BC. Because
the blockchain never gets shorter, these block will never be
added. Removing them guarantees that (2) will always be
satisfied.

Note if BC and PU satisfy condition (2) in the definition of a
model, then the chain completion algorithm will return BC and PU
unchanged.

Lemma 1. Let I be a set of Lcl-formulas and let BC be a sequence of
Lcl-formulas such that I∪set(BC) is satisfiable. Let PU be an arbitrary
finite sequence of blocks. For (BC′,PU′) := complete(I,BC,PU) we
find that

1. I ∪ set(BC′) is satisfiable and
2. for each block [i, A] ∈ PU′ we have i > len(BC′) + 1.

Definition 4. Let M := (I,BC,PU, v) be a model and [i, A] be a
block. The updated model M[i,A] is defined as (I,BC′,PU′, v) where

(BC′,PU′) := complete(I,BC,PU ◦ [i, A]).

Remark 1. Note that M[i,A] is well-defined: by Lemma 1 we know
that M[i,A] is indeed a model.

Definition 5. Let M := (I,BC,PU, v) be a model. We define the
truth of an LB-formula F in M, in symbols M |= F , inductively by:

1. M 6|= ⊥;
2. M |= P if P ∈ v for P ∈ AP;
3. M |= Qi if i ≤ len(BC) for Qi ∈ AQ;
4. M |= F → G if M 6|= F or M |= G;
5. M |= 2A if I ∪ set(BC) |= A;
6. M |= [i, A]F if M[i,A] |= F .

We define validity only with respect to the class of models that
do not have provisional updates.

Definition 6. We call a model M = (I,BC,PU, v) initial if PU = 〈〉.
A formula F is called valid if M |= F for all initial models M.

3 The deductive system BCL

In order to present an axiomatic system for our blockchain logic,
we need to formalize an acceptance condition stating whether a re-
ceived block can be added to the blockchain. That is we need a
formula Acc(i, A) expressing that the formula A is consistent with
the current beliefs and the current length of the blockchain is i− 1.
Thus if Acc(i, A) holds, then the block [i, A] will be accepted and
added to the blockchain. The truth definition for the atomic propo-
sitions Qi ∈ AQ says that Qi is true if the blockchain contains at
least i elements. That means the formula Q(i − 1) ∧ ¬Qi is true
if the blockchain contains exactly i − 1 elements. This leads to the
following definition of Acc(i, A) for i ∈ N+:

Acc(i, A) :=

{
¬Qi ∧ ¬2¬A if i = 1

Q(i− 1) ∧ ¬Qi ∧ ¬2¬A if i > 1

As desired, we find that if Acc(i, A) is true, then the chain completion
algorithm can append the formula A to the blockchain (see Lemma 2
later).

An LB-formula is called compliant if the blockchain updates occur
in the correct order. Formally, we use the following definition.

Definition 7. An LB-formula F is compliant if no occurrence of a
[i, A]-operator in F is in the scope of some [j, B]-operator with j > i.

Now we can define a deductive system for BCL. It is formulated
in the language LB and consists of the following axioms:

(PT) Every instance of a propositional tautology
(K) 2(F → G)→ (2F → 2G)
(D) ¬2⊥
(Q) Qi→ Qj if i > j
(A1) [i, A]⊥ → ⊥
(A2) [i, A]P ↔ P for P ∈ AP
(A3.1) Acc(i, A)→ ([i, A]Qi↔ >) for Qi ∈ AQ
(A3.2) ¬Acc(i, A)→ ([i, A]Qi↔ Qi) for Qi ∈ AQ
(A3.3) [i, A]Qj ↔ Qj for Qj ∈ AQ and i 6= j

(A4)
[i1, A1] . . . [ik, Ak](F → G)↔

([i1, A1] . . . [ik, Ak]F → [i1, A1] . . . [ik, Ak]G)
(A5.1) Acc(i, A)→ ([i, A]2B ↔ 2(A→ B))
(A5.2) ¬Acc(i, A)→ ([i, A]2B ↔ 2B)

(A6)
[h1, C1] . . . [hk, Ck][i, A][j, B]F ↔

[h1, C1] . . . [hk, Ck][j, A][i, B]F
for i 6= j

Note that in (A6), we may choose k to be 0, in which case the
axiom has the form [i, A][j, B]F ↔ [j, A][i, B]F for i 6= j.

In order to formulate the rules of BCL, we need the following no-
tation. Let H(P) be a formula that may contain occurrences of the
atomic proposition P . By H(F), we denote the result of simultane-
ously replacing each occurrence of P in H(P) with the formula F .
The rules of BCL are:

(MP)
F F → G

G
(NEC)

A
2A

(SUB)
F ↔ G

H(F)↔ H(G)

where (SUB) can only be applied if H(F) ↔ H(G) is a compliant
formula.

Remark 2. Our semantics includes infinite blockchains: in a given
model (I,BC,PU, v), the sequence BC may have infinite length. If we
want to exclude such models, then we have to add an infinitary rule

Qi for all i ∈ N+

⊥

to BCL. This rule states that some Qi must be false, which means
that BC has finite length.

4 Soundness

Before we can establish soundness of BCL, we have to show some
preparatory lemmas.

Lemma 2. Let M := (I,BC, 〈〉, v) be an initial model. Further let
(I,BC′,PU′, v) := M[i,A] for some block [i, A].

1. If M |= Acc(i, A), then BC′ = BC ◦ A. In particular, this yields
len(BC′) = i and for each j with j 6= i,

M |= Qj if and only if M[i,A] |= Qj.

2. If M 6|= Acc(i, A), then BC′ = BC.

Lemma 3. Each axiom of BCL is valid.

Lemma 4. Let M = (I,BC,PU, v) be an arbitrary model and let
[i, A] be a block such that i > len(BC) + 1. Then we have M[i,A] =
(I,BC,PU ◦ [i, A], v).

Lemma 5. Let M = (I,BC, 〈〉, v) be an initial model and let [i, A]
be a block such that i ≤ len(BC) + 1. Then M[i,A] is an initial model,
too.

Lemma 6. Let (I,BC,PU, v) be a model and F be an LB-formula
such that for each [i, A] occurring in F we have i > len(BC) + 1.
Then

(I,BC,PU, v) |= F if and only if (I,BC, 〈〉, v) |= F.

Now we can show that the rule (SUB) preserves validity.

Lemma 7. Let H(P), F,G be LB-formulas such that H(F)↔ H(G)
is compliant. We have that

if F ↔ G is valid, then H(F)↔ H(G) is valid, too.

We have established that the axioms of BCL are valid and that
(SUB) preserves validity. It is easy to see that the rules (MP) and
(NEC) also preseve validity. Soundness of BCL follows immediately.

Corollary 1. For each formula F we have

` F implies F is valid.

Remark 3. The reduction axiom (A3.3) does not hold in non-initial
models. Indeed, let M := (∅, 〈〉, 〈[2,>]〉, ∅). We find that M[1,P] =
(∅, 〈P,>〉, 〈〉, ∅). Hence M[1,P] |= Q2, which is M |= [1, P]Q2. But we
also have M 6|= Q2.

Remark 4. The above remark also implies that a block necessitation
rule would not be sound, that is the validity of F does not entail the
validity of [i, A]F . Indeed, the axiom [1, P]Q2↔ Q2 is valid; but the
formula [2,>]([1, P]Q2↔ Q2) is not valid as shown in the previous
remark.

Remark 5. The rule (SUB) would not preserve validity if we drop the
condition that the conclusion must be compliant. Indeed, let us again
consider the valid formula [1, P]Q2 ↔ Q2. Without the compliance
condition, the rule (SUB) would derive [2, P ′][1, P]Q2 ↔ [2, P ′]Q2,
which is not a valid formula.

5 Normal form

Remember that a formula is compliant if the blockchain updates
occur in the correct order. In this section, we establish a normal
form theorem for our simple blockchain logic.

Definition 8. A base formula is a formula that has one of the fol-
lowing forms (which include the case of no blockchain updates):

1. [i1, A1] . . . [im, Am]⊥
2. [i1, A1] . . . [im, Am]P with P ∈ AP ∪AQ
3. [i1, A1] . . . [im, Am]2B

Formulas in normal form are given as follows:

1. each compliant base formula is in normal form
2. if F and G are in normal form, then so is F → G.

Remark 6. As an immediate consequence of this definition, we ob-
tain that for each formula F ,

if F is in normal form, then F is compliant.

The following theorem states that for each formula, there is a
provably equivalent formula in normal form. The proof is by induc-
tion on the structure of F .

Theorem 1. For each LB-formula F , there is an LB-formula G in
normal form such that ` F ↔ G.

6 Completeness

We first show that BCL is complete for modal formulas. The modal
language LM consists of all update-free LB-formulas. Formally, LM

is given by the following grammar

F ::= ⊥ | P | Q | F → F | 2A ,

where P ∈ AP , Q ∈ AQ, and A ∈ Lcl.
We need the collection BCL2 of all BCL axioms that are given

in LM. The usual satisfaction relation for Kripke models is denoted
by |=2.

Lemma 8. For each LM-formula F we have

F is valid implies ` F .

We establish completeness for compliant formulas using a trans-
lation from compliant formulas to provably equivalent update-free
formulas. We start with defining a mapping h that eliminates up-
date operators.

Definition 9. The mapping h from {[i, A]F | F ∈ LM} to LM is
inductively defined by:

h([i, A]⊥) := ⊥
h([i, A]P) := P for P ∈ AP

h([i, A]Qi) := Acc(i, A) ∨Qi
h([i, A]Qj) := Qj for Qj ∈ AQ and i 6= j

h([i, A](F → G)) := h([i, A]F)→ h([i, A]G)

h([i, A]2B) := (Acc(i, A) ∧2(A→ B)) ∨ (¬Acc(i, A) ∧2B)

The mapping h corresponds to the reduction axioms of BCL. Thus
it is easy to show the following lemma by induction on the structure
of F .

Lemma 9. Let F be an LB-formula of the form [i, A]G such that
G ∈ LM. We have that ` F ↔ h(F).

We define a translation t from LB to LM

Definition 10. The mapping t : LB → LM is inductively defined by:

t(⊥) := ⊥
t(P) := P for P ∈ AP ∪AQ

t(F → G) := t(F)→ t(G)

t(2A) := 2A

t([i, A]F) := h([i, A]t(F))

Lemma 10. For each compliant formula F , we have

` F ↔ t(F).

Theorem 2. For each compliant LB-formula F we have

F is valid implies ` F .

Combining Theorem 1 and Theorem 2 easily yields completeness for
the full language.

Theorem 3. For each LB-formula F we have

F is valid implies ` F .

7 Conclusion

We have presented BCL, a dynamic logic to reason about updates
in a simple blockchain model. Our semantics does not have the full
complexity of the blockchains used in Bitcoin or Ethereum, yet it ex-
hibits two key properties of blockchains: blockchain extensions must
preserve consistency and blocks may be received in the wrong order.
Note, however, that although receiving blocks in the wrong order is
an important logical possibility, it only happens rarely in practice:

in the Bitcoin protocol the average generation time of a new block
is 10 minutes; the average time until a node receives a block is only
6.5 seconds [6].

In order to illustrate the dynamics of our simple blockchain logic,
we state some valid principles of BCL:

Persistence: 2A → [i, B]2A. Beliefs are persistent, i.e., receiving
a new block cannot lead to a retraction of previous beliefs.

Consistency: [i, B]¬2⊥. Receiving a new block cannot result in
inconsistent beliefs.

Success: Acc(i, A) → [i, A]2A. If a block [i, A] is acceptable, then
A is believed after receiving [i, A].4

Failure: (Qi∨¬Q(i−1))→ ([i, B]2A↔ 2A). If the current length
of the blockchain is not i − 1, then receiving a block [i, B] will
not change the current beliefs.

There are several open issues for future work. Let us only mention
two of them. Although blockchains are called chains, the data struc-
ture that is actually used is more tree-like and there are different
options how to choose the valid branch: Bitcoin currently uses the
branch that has the greastest proof-of-work effort invested in it [16]
(for simplicity we can think of it as the longest branch); but recent re-
search shows that the GHOST rule [18] (used, e.g., in Ethereum [21])
provides better security at higher transaction throughput. We plan
to extend BCL so that it can handle tree-like structures and the cor-
responding forks of the chain. In particular, this requires some form
of probability logic to model the fact that older transactions have
smaller probability of being reversed [9, 16, 18].

In a multi-agent setting, each agent (node) has her own instance
of a blockchain. Justification logics [2] could provide a formal ap-
proach to handle this. Evidence terms could represent blockchain
instances and those instances can be seen as justifying the agents’
knowledge about the accepted transactions. This approach would
require to develop new dynamic justification logics [4, 17, 14]. More-
over, if the underlying blockchain model supports forks of the chain,
then we need justification logics with probability operators [12].

4 We call this prinicple success; but it is not related to the notion of a successful
formula as studied in dynamic epistemic logic, see, e.g., [8].

References

1. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
O’Reilly Media, Inc. (2014)

2. Artemov, S.N.: Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic 7(1), 1–36 (Mar 2001)

3. Brünnler, K., Flumini, D., Studer, T.: A logic of blockchain updates. E-print
1707.01766, arXiv.org (2017)

4. Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifica-
tions. Journal of Computer and System Sciences 80(6), 1046–1066 (2014)

5. Buterin, V.: Ethereum: A next-generation smart contract and decentralized ap-
plication platform (2013), https://github.com/ethereum/wiki/wiki/White-Paper,
retrieved 2 Feb. 2017

6. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
13th IEEE International Conference on Peer-to-Peer Computing. pp. 1–10 (2013)

7. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Syn-
these Library, vol. 337. Springer (2007)

8. van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese 151(2), 201–232
(2006)

9. Grunspan, C., Pérez-Marco, R.: Double spend races. ArXiv e-prints 1702.02867
(2017)

10. Halpern, J.H., Rafael, P.: A knowledge-based analysis of the blockchain protocol.
In: Lang, K. (ed.) TARK 2017. pp. 324–335. No. 251 in EPTCS (2017)

11. Herlihy, M., Moir, M.: Blockchains and the logic of accountability: Keynote ad-
dress. In: LICS ’16. pp. 27–30 (2016)

12. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-
abilistic justification logic. Logic Journal of IGPL 23(4), 662–687 (2015)

13. Kooi, B.: Expressivity and completeness for public update logics via reduction
axioms. Journal of Applied Non-Classical Logics 17(2), 231–253 (2007)

14. Kuznets, R., Studer, T.: Update as evidence: Belief expansion. In: Artemov, S.N.,
Nerode, A. (eds.) Logical Foundations of Computer Science, International Sympo-
sium, LFCS 2013, San Diego, CA, USA, January 6–8, 2013, Proceedings, Lecture
Notes in Computer Science, vol. 7734, pp. 266–279. Springer (2013)

15. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

16. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009)
17. Renne, B.: Public communication in justification logic. Journal of Logic and Com-

putation 21(6), 1005–1034 (Dec 2011), published online July 2010
18. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin.

In: Böhme, R., Okamoto, T. (eds.) Financial Cryptography and Data Security
2015, Revised Selected Papers. pp. 507–527. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

19. Steiner, D.: A system for consistency preserving belief change. In: Artemov, S.,
Parikh, R. (eds.) Proceedings of Rationality and Knowledge. pp. 133–144. 18th
ESSLLI, Association for Logic, Language and Information (2006)

20. Steiner, D., Studer, T.: Total public announcements. In: Artemov, S., Nerode, A.
(eds.) LFCS 2007. LNCS, vol. 4514, pp. 498–511. Springer (2007)

21. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger, EIP-
150 revision (2017), https://ethereum.github.io/yellowpaper/paper.pdf, retrieved
2 Feb. 2017

