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Abstract
Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin)
or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there are only few logic-based
models for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL
is sound and complete with respect to a simple blockchain model.
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1 Introduction

Bitcoin [19] is a cryptocurrency that uses peer-to-peer technology to support direct user-to-user
transactions without an intermediary such as a bank or credit card company. In order to prevent
double spending, which is a common issue in systems without central control, Bitcoin maintains a
complete and public record of all transactions at each node in the network. This ledger is called the
blockchain.

The blockchain is essentially a growing sequence of blocks, which contain approved transactions
and a cryptographic hash of the previous block in the sequence. Because the blockchain is stored
locally at each node, any update to it has to be propagated to the entire network. Nodes that receive
a transaction [1, 4, 21]

1. first verify its validity (i.e. whether it is compatible with all preceeding transactions);
2. if it is valid, then it is added to the blockchain and
3. sent to all other nodes.

Blockchain technology, as a general solution to the Byzantine generals’ problem [16], is now not only
used for financial transactions but also for many other applications like, e.g. smart contracts [7].

Herlihy and Moir [11] proposed to develop a logic of accountability to design and verify
blockchain systems. In particular, they discussed blockchain scenarios to test (i) logics of autho-
rization, (ii) logics of concurrency and (iii) logics of incentives.

Halpern and Pass [10] provided a characterization of agents’ knowledge when running a
blockchain protocol using a variant of common knowledge. Other characterizations in terms of
(probabilistic) epistemic logic are given in [17, 18].

Vol. 30, No. 8, © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

Advance Access Publication on 25 September 2020 doi:10.1093/logcom/exaa045

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/8/1469/5911136 by guest on 26 February 2021



1470 A logic of blockchain updates

In the present paper, we are not interested in accountability or aspects of common knowledge.
We study the local, single agent perspective of a blockchain. That is, we investigate steps 1 and 2
of the above procedure for receiving a transaction. Our approach is inspired by dynamic epistemic
logic [25]. A given state of the local blockchain entails knowledge about the transactions that have
taken place. We ask the following: how does this knowledge change when a new block is received
that might be added to the blockchain? We develop a dynamic logic, BCL, with a semantics that is
based on a blockchain model. The update operators of BCL are interpreted as receiving new blocks.
It is the aim of this paper to investigate the dynamics of local blockchain updates.

The deductive system for BCL includes reduction axioms that make it possible to establish
completeness by a reduction to the update-free case [13]. However, since blockchain updates are
performed only if certain consistency conditions are satisfied, we use conditional reduction axioms
similar to the ones developed by Steiner to model consistency preserving updates [22]. Moreover,
unlike traditional public announcements [25], blockchain updates cannot lead to an inconsistent
state, i.e. updates are total, like in [23].

We do not base BCL on an existing blockchain implementation but use a very simple model.
First of all, the blockchain is a sequence of propositional formulas. Further, we maintain a list of
provisional updates. Our blocks consist of two parts: a sequence number (called the index of the
block) and a propositional formula. If a block is received, then the following case distinction is
performed where i is the index of the block and l is the current length of the blockchain:

1. i ≤ l. The block is ignored.
2. i = l+1. If the formula of the block is consistent with the blockchain (i.e. it does not contradict

blocks that are already accepted in the blockchain), then it is added to the blockchain; otherwise
the block is ignored. If the blockchain has been extended, then this procedure is performed also
with the blocks stored in the list of provisional updates.

3. i > l + 1. The block is added to the list of provisional updates.

Although this is a simple model, it features two important logical properties of blockchains:
consistency must be preserved and blocks may be received in the wrong order, in which case they
are stored separately until the missing blocks have been received.

The main contribution of our paper from the point of view of dynamic epistemic logic is that we
maintain a list of provisional updates. That means we support updates that do not have an immediate
effect but that may lead to a belief change later only after certain other updates have been performed.
BCL is the first logic that features provisional updates of this kind.

The paper is organized as follows. The next section introduces our blockchain model, the language
of BCL and its semantics. In Section 3, we introduce a deductive system for BCL. We establish
soundness of BCL in Section 4. In Section 5, we show a normal form theorem for BCL, which is
used in Section 6 to prove completeness of BCL. The final section studies some key principles of the
dynamics of our blockchain logic and discusses future work.

The present paper is an extended version of a paper presented at LFCS [5]. Note that the
conference version did not include any proofs.

2 A simple blockchain logic

The set of all natural numbers is denoted by N := {0, 1, 2, . . .}. The set of positive natural numbers
is denoted by N

+ := {1, 2, . . .}. We use ω for the least ordinal such that ω > n, for all n ∈ N.
Let σ = 〈σ1, . . . , σn〉 be any finite sequence. We define its length by len(σ ) := n. For an

infinite sequence σ = 〈σ1, σ2, . . .〉, we set len(σ ) := ω. For a (finite or infinite) sequence

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/8/1469/5911136 by guest on 26 February 2021



A logic of blockchain updates 1471

σ = 〈σ1, σ2, . . . , σi, . . .〉, we set (σ )i := σi for i ≤ len(σ ). The case i > len(σ ) can be safely
ignored. The empty sequence is denoted by 〈〉 and we set len(〈〉) := 0. We can append x to a finite
sequence σ := 〈σ1, . . . , σn〉, in symbols we set σ ◦ x := 〈σ1, . . . , σn, x〉. We will also need the set of
all components of a sequence σ and define

set(σ ) := {x | there is an i such that x = σi}.
In particular, we have set(〈〉) := ∅. Moreover, we use the shorthand x ∈ σ for x ∈ set(σ ).

We start with a countable set of atomic propositions AP := {P0, P1, . . .}. The set of formulas Lcl
of classical propositional logic is given by the following grammar

A ::= ⊥ | P | A → A ,

where P ∈ AP .
In order to introduce the language LB for blockchain logic, we need another countable set of

special atomic propositions AQ := {Q1, Q2, . . .} that is disjoint with AP . We will use these special
propositions later to keep track of the length of the blockchain. The formulas of LB are now given
by the grammar

F ::= ⊥ | P | Q | F → F | �A | [i, A]F ,

where P ∈ AP , Q ∈ AQ, A ∈ Lcl and i ∈ N
+. The operators of the form [i, A] are called blockchain

updates (or simply updates).
Note that in LB we cannot express higher-order knowledge, i.e. we can only express knowledge

about propositional facts but not knowledge about knowledge of such facts. Since in the present
paper, we only deal with the local (i.e. single agent) perspective on blockchains, higher-order
knowledge and introspection are not important. Of course, for the multi-agent perspective on
blockchains, higher-order notions, in particular common knowledge, are essential epistemic concepts
[4, 17, 18].

For all languages in this paper, we define further Boolean connectives (e.g. for negation,
conjunction, and disjunction) as usual. Moreover, we assume that unary connectives bind stronger
than binary ones.

For Lcl, we use the semantics of classical propositional logic. A valuation v is a subset of AP
and we define the truth of an Lcl-formula A under v, in symbols v |
 A as usual. For a set Γ of
Lcl-formulas, we write v |
 Γ if v |
 A for all A ∈ Γ . The set Γ is satisfiable if there is a valuation
v such that v |
 Γ . We say Γ entails A, in symbols Γ |
 A, if for each valuation v we have

v |
 Γ implies v |
 A.

Now we introduce the blockchain semantics for LB.

DEFINITION 1
A block is a pair [i, A] where A is a formula of Lcl and i is an element of N+. We call i the index and A
the formula of the block [i, A]. We define functions ind and fml by ind[i, A] := i and fml[i, A] := A.

DEFINITION 2
A model M := (I, BC, PU, v) is a quadruple where

1. I is a set of Lcl-formulas
2. BC is a sequence of Lcl-formulas
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1472 A logic of blockchain updates

3. PU is a finite sequence of blocks
4. v is a valuation, i.e. v ⊆ AP

such that

I ∪ set(BC)is satisfiable (1)

and

for each block [i, A] ∈ PU we have i > len(BC) + 1. (2)

The components of a model (I, BC, PU, v) have the following meaning:

1. I models initial background knowledge.
2. BC is the blockchain.
3. PU stands for provisional updates. The sequence PU consists of those blocks that have been

announced but that could not yet be added to the blockchain because their index is too high.
Maybe they will be added to BC later (i.e. after the missing blocks have been added).

4. v states which atomic propositions are true.

We assume that for each index, eventually a block will be added to the blockchain. If a missing
block remained missing forever, then the blockchain would remain fixed from then on.

We need some auxiliary definitions in order to precisely describe the dynamics of the blockchain.

DEFINITION 3

1. Let PU be a finite sequence of blocks. Then we let find(i, PU) be the least j ∈ N
+ such that

there is an Lcl-formula A with [i, A] = (PU)j.
2. Let σ = 〈σ1, . . . , σi−1, σi, σi+1, . . .〉 be a sequence. We set

remove(i, σ) := 〈σ1, . . . , σi−1, σi+1, . . .〉.
3. Given a set of Lcl-formulas I, a sequence of Lcl-formulas BC and a finite sequence of blocks

PU, the chain completion complete(I, BC, PU) is computed according to Algorithm 1.

Let us comment on the chain completion procedure. The numbers refer to the lines in
Algorithm 1.

1: n is the index a block must contain so that it could be added to the blockchain BC.
2: [n, A] ∈ PU for some formula A means that PU contains a block that could be added to BC.

3–5: find the next formula B that could be added to BC and remove the corresponding block
from PU.

6: I ∪ set(BC) ∪ {B} is satisfiable means that B is consistent with the current belief. This test
guarantees that (1) will always be satisfied.

7, 8: update the blockchain BC with B.
11–15: remove all blocks from PU whose index is less than or equal to the current length of the

blockchain BC. Because the blockchain never gets shorter, these block will never be added.
Removing them guarantees that (2) will be satisfied after executing the algorithm.

Note if BC and PU satisfy condition (2) in the definition of a model, then the chain completion
algorithm will return BC and PU unchanged.
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Algorithm 1 Chain completion algorithm: complete
Input:(I, BC, PU)

1. n ← len(BC) + 1
2. while [n, A] ∈ PU for some formula A do
3. i ← find(n, PU)

4. B ← fml((PU)i)

5. remove(i, PU)

6. if I ∪ set(BC) ∪ {B} is satisfiable then
7. BC ← BC ◦ B
8. n ← len(BC) + 1
9. end if

10. end while
11. for i ∈ len(PU), . . . , 1 do
12. if ind((PU)i) < n then
13. remove(i, PU)

14. end if
15. end for
16. return (BC, PU)

LEMMA 1
Let I be a set of Lcl-formulas and let BC be a sequence of Lcl-formulas such that I ∪ set(BC) is sat-
isfiable. Let PU be an arbitrary finite sequence of blocks. For (BC′, PU′) := complete(I, BC, PU),
we find that

1. I ∪ set(BC′) is satisfiable and
2. for each block [i, A] ∈ PU′ we have i > len(BC′) + 1.

PROOF. By assumption,

I ∪ set(BC) is satisfiable (3)

holds for the arguments passed to the algorithm. Moreover, the condition in line 6 guarantees that (3)
is a loop invariant of the while loop in lines 2–10, i.e. it holds after each iteration. Since BC is not
changed after line 10, (3) also holds for the final result, which shows the first claim of the lemma.

It is easy to see that

n = len(BC) + 1 (4)

also is a loop invariant of while loop in lines 2–10. In particular, (4) holds after line 10 and thus
the for loop in lines 11–15 removes all blocks [i, A] from PU with i < len(BC) + 1. Moreover,
after the while loop in lines 2–10 has terminated, its loop condition must be false, which means
that PU cannot contain a block [i, A] with i = len(BC) + 1. This finishes the proof of the second
claim. �
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1474 A logic of blockchain updates

DEFINITION 4
Let M := (I, BC, PU, v) be a model and [i, A] be a block. The updated model M[i,A] is defined as
(I, BC′, PU′, v) where

(BC′, PU′) := complete(I, BC, PU ◦ [i, A]).

REMARK 1
Note that M[i,A] is well defined: by Lemma 1, we know that M[i,A] is indeed a model.

DEFINITION 5
Let M := (I, BC, PU, v) be a model. We define the truth of an LB-formula F in M, in symbols
M |
 F, inductively by

1. M �|
 ⊥;
2. M |
 P if P ∈ v for P ∈ AP;
3. M |
 Qi if i ≤ len(BC) for Qi ∈ AQ;
4. M |
 F → G if M �|
 F or M |
 G;
5. M |
 �A if I ∪ set(BC) |
 A;
6. M |
 [i, A]F if M[i,A] |
 F.

A formula �A means that A follows from the blockchain, i.e. A is a logical consequence from
the propositions stored in the blockchain. We can consider � to be an epistemic operator since the
blockchain represents our knowledge about which transactions have happened.

We define validity only with respect to the class of models that do not have provisional updates.

DEFINITION 6
We call a model M = (I, BC, PU, v) initial if PU = 〈〉. A formula F is called valid if M |
 F for all
initial models M.

3 The deductive system BCL

In order to present an axiomatic system for our blockchain logic, we need to formalize an acceptance
condition stating whether a received block can be added to the blockchain. That is, we need a formula
Acc(i, A) expressing that the formula A is consistent with the current beliefs and the current length
of the blockchain is i − 1. Thus, if Acc(i, A) holds, then the block [i, A] will be accepted and added
to the blockchain. The truth definition for the atomic propositions Qi ∈ AQ says that Qi is true if
the blockchain contains at least i elements. That means the formula Q(i − 1) ∧ ¬Qi is true if the
blockchain contains exactly i − 1 elements. This leads to the following definition of Acc(i, A) for
i ∈ N

+:

Acc(i, A) :=
{

¬Qi ∧ ¬�¬A if i = 1

Q(i − 1) ∧ ¬Qi ∧ ¬�¬A if i > 1.

As desired, we find that if Acc(i, A) is true, then the chain completion algorithm can append the
formula A to the blockchain (see Lemma 2 later).
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(PT) Every instance of a propositional tautology
(K) �(F → G) → (�F → �G)

(D) ¬�⊥
(Q) Qi → Qjif i > j
(A1) [i, A]⊥ → ⊥
(A2) [i, A]P ↔ P for P ∈ AP
(A3.1) Acc(i, A) → ([i, A]Qi ↔ �) for Qi ∈ AQ
(A3.2) ¬Acc(i, A) → ([i, A]Qi ↔ Qi) for Qi ∈ AQ
(A3.3) [i, A]Qj ↔ Qj for Qj ∈ AQ and i �= j

(A4)
[i1, A1] . . . [ik , Ak](F → G) ↔

([i1, A1] . . . [ik , Ak]F → [i1, A1] . . . [ik , Ak]G)

(A5.1) Acc(i, A) → ([i, A]�B ↔ �(A → B))

(A5.2) ¬Acc(i, A) → ([i, A]�B ↔ �B)

(A6)
[h1, C1] . . . [hk , Ck][i, A][j, B]F ↔

[h1, C1] . . . [hk , Ck][j, A][i, B]F
for i �= j

An LB-formula is called compliant if the blockchain updates occur in the correct order. Formally,
we use the following definition.

DEFINITION 7
An LB-formula F is called compliant if no occurrence of a [i, A]-operator in F is in the scope of
some [j, B]-operator with j > i.

Now we can define a deductive system for BCL. It is formulated in the language LB and consists
of the following axioms:

We need a little arithmetic: axiom (Q) is used to compare indexes. However, we do not need
anything else.

Note that in (A6), we may choose k to be 0, in which case the axiom has the form [i, A][j, B]F ↔
[j, A][i, B]F for i �= j.

In order to formulate the rules of BCL, we need the following notation. Let H(P) be a formula
that may contain occurrences of the atomic proposition P. By H(F), we denote the result of
simultaneously replacing each occurrence of P in H(P) with the formula F. The rules of BCL are

(MP)
F F → G

G
(NEC)

A
�A

(SUB)
F ↔ G

H(F) ↔ H(G)

where (SUB) can only be applied if H(F) ↔ H(G) is a compliant formula.

REMARK 2
Our semantics includes the case of infinite blockchains: in a given model (I, BC, PU, v), the sequence
BC may have infinite length. If we want to exclude such models, then we have to add an infinitary
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1476 A logic of blockchain updates

rule

Qi for all i ∈ N
+

⊥
to BCL. This rule states that some Qi must be false, which means that BC has finite length.

4 Soundness

Before we can establish soundness of BCL, we have to show some preparatory lemmas.

LEMMA 2
Let M := (I, BC, 〈〉, v) be an initial model. Further, let

(I, BC′, PU′, v) := M[i,A]

for some block [i, A].

1. If M |
 Acc(i, A), then BC′ = BC ◦ A. In particular, this yields len(BC′) = i and for each j
with j �= i,

M |
 Qj if and only if M[i,A] |
 Qj.

2. If M �|
 Acc(i, A), then BC′ = BC.

PROOF. Assume M |
 Acc(i, A). That means

len(BC) + 1 = i and I ∪ set(BC) ∪ {A} is satisfiable.

Hence, we find

complete(I, BC, 〈〉 ◦ [i, A]) = (BC ◦ A, 〈〉).
Therefore, BC′ = BC ◦ A. This immediately yields

len(BC′) = i = len(BC) + 1

and for each j with j �= i,

M |
 Qj if and only if M[i,A] |
 Qj.

Assume M �|
 Acc(i, A). This implies

len(BC) + 1 �= i or I ∪ set(BC) ∪ {A} is not satisfiable.

Hence, for (BC′, PU′) := complete(I, BC, 〈〉 ◦ [i, A]), we find BC′ = BC. �
LEMMA 3
Each axiom of BCL is valid.

PROOF. We only show some cases. Let M := (I, BC, 〈〉, v) be an initial model.

1. ¬�⊥. By the definition of a model, we have that I ∪ set(BC) is satisfiable. Hence, I ∪
set(BC) �|
 ⊥, which means M �|
 �⊥.

2. Qi → Qj for i > j. Assume M |
 Qi. That means i ≤ len(BC). Hence, for j < i, we have
j ≤ len(BC), which gives M |
 Qj.

3. Acc(i, A) → ([i, A]Qi ↔ �). Assume M |
 Acc(i, A). Using Lemma 2, we get M[i,A] |
 Qi.
Thus, M |
 [i, A]Qi ↔ � as desired.
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4. ¬Acc(i, A) → ([i, A]Qi ↔ Qi). Assume M �|
 Acc(i, A). We use again Lemma 2 to obtain
M |
 [i, A]Qi ↔ Qi.

5. [i, A]Qj ↔ Qj for Qj ∈ AQ and i �= j. If M � �|
 Acc(i, A), we obtain M |
 [i, A]Qj ↔ Qj as in
the previous case. If M |
 Acc(i, A), then again by Lemma 2, M |
 [i, A]Qj ↔ Qj for i �= j.

6. Acc(i, A) → ([i, A]�B ↔ �(A → B)). Assume M |
 Acc(i, A) and let

(I, BC′, PU′, v) := M[i,A].

By Lemma 2, we get BC′ = BC ◦ A. Thus, set(BC′) = set(BC) ∪ {A}. By classical logic, we
find

I ∪ set(BC) ∪ {A} |
CL B if and only if I ∪ set(BC) |
CL A → B,

which yields M |
 [i, A]�B ↔ �(A → B).
7. ¬Acc(i, A) → ([i, A]�B ↔ �B). Assume M �|
 Acc(i, A). From Lemma 2, we immediately

get M |
 [i, A]�B ↔ �B. �
LEMMA 4
Let M = (I, BC, PU, v) be an arbitrary model and let [i, A] be a block such that i > len(BC) + 1.
Then we have M[i,A] = (I, BC, PU ◦ [i, A], v).

PROOF. Let

(BC′, PU′) := complete(I, BC, PU ◦ [i, A]).

Since M is a model, condition (2) is satisfied. Therefore, we find that

BC′ = BC and PU′ = PU ◦ [i, A],

which is M[i,A] = (I, BC, PU ◦ [i, A], v). �
LEMMA 5
Let M = (I, BC, 〈〉, v) be an initial model and let [i, A] be a block such that i ≤ len(BC) + 1. Then
M[i,A] is an initial model, too.

PROOF. Let PU = 〈[i, A]〉 and

(BC′, PU′) := complete(I, BC, PU).

If i = len(BC) + 1, then [i, A] is removed from PU in line 5 of Algorithm 1. If i < len(BC) + 1,
then [i, A] is removed from PU in line 13. In both cases, we find PU′ = 〈〉, which means that M[i,A]

is initial. �
LEMMA 6
Let (I, BC, PU, v) be a model and F be an LB-formula such that for each [i, A] occurring in F we
have i > len(BC) + 1. Then

(I, BC, PU, v) |
 F if and only if (I, BC, 〈〉, v) |
 F.

PROOF. By induction on the structure of F and a case distinction on the outermost connective. The
only interesting case is F = [i, A]G. Since we have i > len(BC) + 1 by assumption, we find by
Lemma 4 that

(I, BC, PU, v)[i,A] = (I, BC, PU ◦ [i, A], v).
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1478 A logic of blockchain updates

Thus we get

(I, BC, PU, v) |
 [i, A]G if and only if (I, BC, PU ◦ [i, A], v) |
 G. (5)

Using I.H. twice yields

(I, BC, PU ◦ [i, A], v) |
 G if and only if (I, BC, 〈[i, A]〉, v) |
 G. (6)

Again since i > len(BC) + 1 we find that

(I, BC, 〈[i, A]〉, v) = (I, BC, 〈〉, v)[i,A]

and thus

(I, BC, 〈[i, A]〉, v) |
 G if and only if (I, BC, 〈〉, v) |
 [i, A]G. (7)

Taking (5), (6) and (7) together yields the desired result. �
Now we can show that the rule (SUB) preserves validity.

LEMMA 7
Let H(P), F, G be LB-formulas such that H(F) ↔ H(G) is compliant. We have that

if F ↔ G is valid, then H(F) ↔ H(G)is valid, too.

PROOF. We show the validity of H(F) ↔ H(G) by induction on the structure of H(P). We
distinguish the following cases.

1. H does not contain P. Thus, H = H(F) = H(G) and H(F) ↔ H(G) is trivially valid.
2. H = P. We have H(F) = F and H(G) = G. Thus, H(F) ↔ H(G) is valid by assumption.
3. H = H ′ → H ′′. Follows immediately by I.H.
4. H = �H ′ By I.H., we find that H ′(F) ↔ H ′(G) is valid. Since LB does not include nested

�-operators, H ′(P) is an Lcl-formula. Since H(F) ↔ H(G) is a formula, F and G must be Lcl-
formulas, too. Hence, H ′(F) ↔ H ′(G) is an Lcl-formula and we obtain |
CL H ′(F) ↔ H ′(G).
Hence, we have M |
 �H ′(F) if and only if M |
 �H ′(G) for any model M, which yields that
H(F) ↔ H(G) is valid.

5. H = [i, A]H ′. Let M := (I, BC, 〈〉, v) be an initial model. We distinguish the following cases:
1. i ≤ len(BC) + 1. By Lemma 5, we find that M[i,A] is an initial model. Thus by the I.H. we

infer M[i,A] |
 H ′(F) ↔ H ′(G), from which we infer

M |
 [i, A]H ′(F) ↔ [i, A]H ′(G)

by the validity of (A4).
2. i > len(BC) + 1. By Lemma 4, we find that

M[i,A] = (I, BC, 〈[i, A]〉, v).

Since H(F) is compliant, we obtain for each [j, B] occurring in H(F), that j > len(BC)+1.
Hence, we obtain by Lemma 6 that

M[i,A] |
 H ′(F) if and only if (I, BC, 〈〉, v) |
 H ′(F). (8)

By I.H. we get

(I, BC, 〈〉, v) |
 H ′(F) if and only if (I, BC, 〈〉, v) |
 H ′(G). (9)
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Since H(G) is compliant, we find that H ′(G) satisfies the condition of Lemma 6. Thus,
we can use that lemma again to obtain

(I, BC, 〈〉, v) |
 H ′(G) if and only if M[i,A] |
 H ′(G). (10)

Taking (8), (9) and (10) together yields

M |
 [i, A]H ′(F) ↔ [i, A]H ′(G). �
We have established that the axioms of BCL are valid and that (SUB) preserves validity. It is easy

to see that the rules (MP) and (NEC) also preseve validity. Soundness of BCL follows immediately.

COROLLARY 1
For each formula F, we have

� F implies F is valid.

REMARK 3
The reduction axiom (A3.3) does not hold in non-initial models. Indeed, let M := (∅, 〈〉, 〈[2, �]〉, ∅).
We find that M[1,P] = (∅, 〈P, �〉, 〈〉, ∅). Hence, M[1,P] |
 Q2, which is M |
 [1, P]Q2. However, we
also have M �|
 Q2.

REMARK 4
The above remark also implies that a block necessitation rule would not be sound, i.e. the validity of
F does not entail the validity of [i, A]F. Indeed, the axiom [1, P]Q2 ↔ Q2 is valid, but the formula
[2, �]([1, P]Q2 ↔ Q2) is not valid as shown in the previous remark.

REMARK 5
The rule (SUB) would not preserve validity if we drop the condition that the conclusion must be
compliant. Indeed, let us again consider the valid formula [1, P]Q2 ↔ Q2. Without the compliance
condition, the rule (SUB) would derive [2, P′][1, P]Q2 ↔ [2, P′]Q2, which is not a valid formula.

5 Normal form

Remember that a formula is compliant if the blockchain updates occur in the correct order. In this
section, we establish a normal form theorem for our simple blockchain logic.

DEFINITION 8
A base formula is a formula that has one of the following forms (which include the case of no
blockchain updates):

1. [i1, A1] . . . [im, Am]⊥
2. [i1, A1] . . . [im, Am]P with P ∈ AP ∪ AQ
3. [i1, A1] . . . [im, Am]�B

Formulas in normal form are given as follows:

1. each compliant base formula is in normal form
2. if F and G are in normal form, then so is F → G.
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REMARK 6
As an immediate consequence of this definition, we obtain that for each formula F,

if F is in normal form, thenF is compliant.

The following theorem states that for each formula F, there is a provably equivalent formula in
normal form. The proof is by induction on the structure of F.

THEOREM 1
For each LB-formula F, there is an LB-formula G in normal form such that � F ↔ G.

PROOF. We do an induction on the structure of F and distinguish the following cases:

1. The cases when F = ⊥, F ∈ AP ∪ AQ or F = �B are trivial.
2. F = G → H . By I.H., there are G′ and H ′ in normal form such that � G ↔ G′ and � H ↔ H ′.

Hence, for F′ := G′ → H ′, we find � F ↔ F′ and F′ is in normal form.
3. F = [i1, A1] . . . [ik , Ak]G with G not of the form [ik+1, Ak+1]G′. Subinduction on G. We

distinguish
1. G = ⊥, G = P ∈ AP ∪ AQ or G = �B. In this case, F is a base formula. Using axiom

(A6), we find a compliant base formula F′ such that � F ↔ F′.
2. G = G′ → G′′. Then by axiom (A4)

� F ↔ ([i1, A1] . . . [ik , Ak]G′ → [i1, A1] . . . [ik , Ak]G′′).

Moreover, by I.H., there are H ′ and H ′′ in normal form such that

� H ′ ↔ [i1, A1] . . . [ik , Ak]G′

and

� H ′′ ↔ [i1, A1] . . . [ik , Ak]G′′.

We find that H := H ′ → H ′′ is in normal form and � F ↔ H . �

6 Completeness

We first show that BCL is complete for modal formulas. The modal language LM consists of all
update-free LB-formulas. Formally, LM is given by the following grammar

F ::= ⊥ | P | Q | F → F | �A ,

where P ∈ AP , Q ∈ AQ and A ∈ Lcl.
We need the collection BCL� of all BCL axioms that are given in LM. The usual satisfaction

relation for Kripke models is denoted by |
�.

LEMMA 8
For each LM-formula F, we have

F is valid implies � F.

PROOF. We show the contrapositive. Assume �� F. Since F is a modal formula, there is a Kripke
model K with a world w such that

K, w �|
� F (11)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/8/1469/5911136 by guest on 26 February 2021



A logic of blockchain updates 1481

and

K, w |
� G for all G ∈ BCL�. (12)

Based on the Kripke model K, we construct an initial update model M = (I, BC, 〈〉, v) as follows.
Note that because of (12), we have K, w |
� Qi → Qj if j < i. Let k be the least i ∈ N

+ such that
K, w �|
� Qi if it exists and k := ω otherwise. We set

1. I := {A ∈ Lcl | K, w |
� �A};
2. BC :=

{
〈�, . . . , �〉 such thatlen(BC) = k − 1 if k < ω

〈�, �, . . .〉 if k = ω

3. v := {P ∈ AP | K, w |
 P}.
This definition of BC means that BC is an infinite sequence of � if k = ω.

For each LM-formula G, we have

K, w |
� G if and only if M |
 G. (13)

We show (13) by induction on the structure of G and distinguish the following cases:

1. G = P ∈ AP . Immediate by the definition of v.
2. G = Qi ∈ AQ. If k = ω, we have K, w |
� Qi and, since len(BC) = ω, also M |
 Qi. If

k < ω, we have K, w |
� Qi iff i ≤ k − 1 = len(BC) iff M |
 Qi.
3. G = ⊥. Trivial.
4. G = G1 → G2. By induction hypothesis.
5. G = �A. If K, w |
 �A, then M |
 �A by the definition of I. If M |
 �A, then I∪ set(BC) |


A. By the definition of BC, this is I |
 A. Because I is deductively closed, we get A ∈ I, which
yields K, w |
 �A.

By (11) and (13), we conclude M �|
 F as desired. �
We establish completeness for compliant formulas using a translation from compliant formulas to

provably equivalent update-free formulas. We start with defining a mapping h that eliminates update
operators.

DEFINITION 9
The mapping h from {[i, A]F | F ∈ LM} to LM is inductively defined by

h([i, A]⊥) := ⊥
h([i, A]P) := P for P ∈ AP

h([i, A]Qi) := Acc(i, A) ∨ Qi

h([i, A]Qj) := Qj for Qj ∈ AQ and i �= j

h([i, A](F → G)) := h([i, A]F) → h([i, A]G)

h([i, A]�B) := (Acc(i, A) ∧ �(A → B)) ∨ (¬Acc(i, A) ∧ �B)

The mapping h corresponds to the reduction axioms of BCL. Thus, it is easy to show the following
lemma by induction on the structure of F.
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LEMMA 9
Let F be an LB-formula of the form [i, A]G such that G ∈ LM. We have that � F ↔ h(F).

We define a translation t from LB to LM

DEFINITION 10
The mapping t : LB → LM is inductively defined by

t(⊥) := ⊥
t(P) := P for P ∈ AP ∪ AQ

t(F → G) := t(F) → t(G)

t(�A) := �A

t([i, A]F) := h([i, A]t(F))

LEMMA 10
For each compliant formula F, we have

� F ↔ t(F).

PROOF. The proof is by induction on the structure of F. There are two interesting cases.

1. F = G → H . By I.H., we find � G ↔ t(G) and � H ↔ t(H). Thus, we have

� (G → H) ↔ (t(G) → t(H)),

which yields the desired result by t(G) → t(H) = t(G → H).
2. F = [i, A]G. By I.H., we find � G ↔ t(G). Since [i, A]G is compliant by assumption, we can

use (SUB) to infer [i, A]G ↔ [i, A]t(G). By Lemma 9, we know

� [i, A]t(G) ↔ h([i, A]t(G)).

We finally conclude � [i, A]G ↔ h([i, A]t(G)), which yields the claim since by definition

t([i, A]F) = h([i, A]t(F)).
�

THEOREM 2
For each compliant LB-formula F, we have

F is valid implies � F.

PROOF. Assume that F is a valid and compliant LB-formula. By Lemma 10, we know � F ↔ t(F).
Hence, by soundness of BCL, we get that t(F) is valid, too. Since t(F) is an LM-formula, Lemma 8
yields � t(F). Using Lemma 10 again, we conclude � F. �

Combining Theorem 1 and Theorem 2 immediately yields completeness for the full language.

THEOREM 3
For each LB-formula F, we have

F is valid implies � F.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/8/1469/5911136 by guest on 26 February 2021



A logic of blockchain updates 1483

PROOF. Assume that F is a valid LB-formula. By Theorem 1, we find a compliant LB-formula G
such that

� F ↔ G. (14)

Hence, by soundness of BCL, we know that G is valid, too. Applying Theorem 2 yields � G. We
finally conclude � F by (14). �

7 Conclusion

We have presented BCL, a dynamic logic to reason about updates in a simple blockchain model.
Our semantics does not have the full complexity of the blockchains used in Bitcoin or Ethereum
(see, e.g. [4] for a detailed description of blockchain algorithms), yet it exhibits two key properties
of blockchains: blockchain extensions must preserve consistency and blocks may be received in the
wrong order. Note, however, that although receiving blocks in the wrong order is an important logical
possibility, it only happens rarely in practice: in the Bitcoin protocol the average generation time of
a new block is 10 minutes; the average time until a node receives a block is only 6.5 seconds [8].

In order to illustrate the dynamics of our simple blockchain logic, we state some valid principles
of BCL:

Persistence: �A → [i, B]�A. Beliefs are persistent, i.e. receiving a new block cannot lead to a
retraction of previous beliefs.

Consistency: [i, B]¬�⊥. Receiving a new block cannot result in inconsistent beliefs.
Success: Acc(i, A) → [i, A]�A. If a block [i, A] is acceptable, then A is believed after receiving

[i, A].1

Failure: (Qi ∨ ¬Q(i − 1)) → ([i, B]�A ↔ �A). If the current length of the blockchain is not
i − 1, then receiving a block [i, B] will not change the current beliefs.

PROOF.

1. Persistence: �A → [i, B]�A. Let M := (I, BC, 〈〉, v) be an initial model and assume M |
 �A.
That is I ∪ set(BC) |
 A. Let (I, BC′, PU′, v) := M[i,B]. We find that set(BC) ⊆ set(BC′).
Therefore, I ∪ set(BC′) |
 A; hence, we have M[i,B] |
 �A and M |
 [i, B]�A.

2. Consistency: [i, B]¬�⊥. We let M := (I, BC, 〈〉, v) be an initial model. Further, we set
(I, BC′, PU′, v) := M[i,B]. By Lemma 1, we know that I ∪ set(BC′) is satisfiable, i.e.
I ∪ set(BC′) �|
 ⊥. Hence, M[i,B] |
 ¬�⊥, which is M |
 [i, B]¬�⊥.

3. Success: Acc(i, A) → [i, A]�A. Let M := (I, BC, 〈〉, v) be an initial model and assume M |

Acc(i, A). Let (I, BC′, PU′, v) := M[i,A]. By Lemma 2, we know BC′ = BC ◦ A. Thus, I ∪
set(BC′) |
 A and, therefore M[i,A] |
 �A, which is M |
 [i, A]�A.

4. Failure: (Qi ∨ ¬Q(i − 1)) → ([i, B]�A ↔ �A). Again, let M := (I, BC, 〈〉, v) be an initial
model and assume M |
 Qi ∨ ¬Q(i − 1). We find that M �|
 Acc(i, B). Indeed,

M |
 Qi implies M �|
 Acc(i, B)

and

M |
 ¬Q(i − 1) implies i > 1 and M �|
 Acc(i, B).

1We call this prinicple success, but it is not related to the notion of a successful formula as studied in dynamic epistemic
logic, see, e.g. [24].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/8/1469/5911136 by guest on 26 February 2021



1484 A logic of blockchain updates

Let (I, BC′, PU′, v) := M[i,B]. By Lemma 2, we know BC′ = BC. Therefore, M[i,B] |
 �A if
and only if M |
 �A, which yields

M |
 [i, B]�A ↔ �A.
�

There are several open issues for future work. Let us only mention two of them. Although
blockchains are called chains, the data structure that is actually used is more tree-like and there
are different options how to choose the valid branch: Bitcoin currently uses the branch that has the
greastest proof-of-work effort invested in it [19] (for simplicity we can think of it as the longest
branch), but it is well known that the GHOST rule [21] (used, e.g. in Ethereum [26]) provides
better security at higher transaction throughput. We plan to extend BCL so that it can handle tree-
like structures and the corresponding forks of the chain. In particular, this requires some form of
probability logic to model the fact that older transactions are less likely reversed [9, 19, 21].

In a multi-agent setting, each agent (node) has her own instance of the blockchain. Justification
logics [2, 3, 15] could provide a formal approach to handle this. Evidence terms could represent
blockchain instances and those instances can be seen as justifying the agents’ knowledge about the
accepted transactions. This approach would require to develop new dynamic justification logics [6,
14, 20]. Moreover, if the underlying blockchain model supports forks of the chain, then we need
justification logics with probability operators [12].
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