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free” approach, inductive and coinductive properties can be proved within membership equational
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1 Introduction

Data types, like natural numbers, finite lists etc., are initial algebras. As such, they allow to define
functions on them by induction and to prove properties of those functions by induction. A typical
example are finite lists (or words) over some set A denoted A*. The constructors of A* usually are
denoted nil: — A* and cons: A x A* — A*. A function from the set of finite lists over A into some
set can be defined by giving its values on the constructors. Consider for example the length of a list
len: A* = N, inductively defined as

len(nil) =0 and len(cons(a,l)) =len(l) + 1.

In addition to the definition principle there also is a proof principle of induction. Proving that some
predicate P holds for all [ € A* can be done by proving for all l € A* and a € A

P(nil) and P(l) = P(cons(a,l)).

Behaviours of systems that involve states and transitions between them (automata, transition systems,
processes: what could be called process types) are final coalgebras. As such, dually to initial algebras, they
provide the definition and proof principle of coinduction. A typical example are outputs of nonterminating
processes, infinite lists (streams) over some set A denoted AN, Instead of constructors we have what could
be called destructors: head: AN — A and tail: AN — AN. Coinduction as a definition principle allows to
define functions into AN by giving the value of the destructors on it. Consider the definition of a function
even: AN — AN that returns the stream containing every other element from the original stream:

head(even(s)) = head(tail(s)) and tail(even(s)) = even(tail (tail(s))).

That even is well-defined follows from AY with head and tail being a final coalgebra, just as the well-
definedness of len follows from A* with nil and cons being an initial algebra. The proof principle
of coinduction says that, to prove the equality of two streams s; and so, it suffices to exhibit some
bisimulation relation R, such that R(s1,s2). Usually the definitions of s; and s, determine R. A proof
by coinduction then amounts to showing that R is a bisimulation, that is, for any streams sy, so if R(s1, s2)
then

head(s1) = head(ss) and R(tail(sy),tail(sz))

The proof principle of coinduction follows from the finality of AN with head and tail, just as the proof
principle of induction follows from the fact that A* with nil and cons is an initial algebra. Proofs of that,
the examples from above treated in more depth and many more are found in [JR97].

Considerable work has been done in the area of inductive theorem proving, either by using the induction
principle as an axiom in a higher order setting or by making induction an explicit inference rule in a
first order setting. Coinductive theorem proving has been done usually by describing final coalgebras as
greatest fixpoints of endofunctors in higher order logic, see [P97] and [HJ97].

If one is interested in using both induction and coinduction in the same proof, a natural question to ask
is whether the proof then should be carried out at a level where the duality between both principles is
readily apparent. That level is the equality of morphisms in a category with structure, namely initial
algebra objects and final coalgebra objects, together with their respective unique homomorphisms. By
moving to that “element free” abstract level it is possible to greatly simplify the logic used to express the
induction and coinduction principles, because here functions are first order elements. Proofs by induction
or coinduction become purely algebraic.

Membership equational logic appears to be well-suited for reasoning in those categories because partiality
can be easily encoded. The Maude system [Maude99] mechanizes reasoning in membership equational
logic theories by rewriting. In this thesis I start to investigate this approach to coinductive theorem
proving and in particular how the Maude system can help.

This work considers coinductive proofs only. But it should be stressed that the general approach dualizes
straightforwardly to inductive proofs, and that the ultimate goal is to mechanize proofs that contain
induction and coinduction nested one into another.



In the next section some coalgebraic peliminaries are defined and a short introduction to membership
equational logic and Maude is given. In section 3 categories are specified in membership equational logic.
They are enriched by products, sums and a terminal object in section 4. Final coalgebra objects are
considered in section 5, the examples treated are streams, (completed) natural numbers and sequences.
Maude will be used to prove some simple coinductive properties of those. In section 6 I briefly outline
what a coinduction strategy is in the context of reasoning in a structured category and present some
examples.

2 Preliminaries

I assume familiarity with the notions of set, function, category, functor, product, coproduct and the free
category generated by a graph. A good reference for all of the above is [BW99]. The concept of term
rewriting [DJ90], and in particular termination and confluence of a term rewriting system will be used
to decide a word problem. In the next subsection, membership equational logic is introduced as in [M98§],
for that some basic notions from many-sorted universal algebra are needed.

2.1 Coinductive Reasoning

Definition 2.1 (Coalgebra). For an endofunctor 7': Set — Set, a coalgebra of T is a pair (S, q)
consisting of a set S and a function g: S — T'(S) called structure of the coalgebra.

Definition 2.2 (Coalgebra Homomorphism). For an endofunctor 7': Set — Set, a coalgebra ho-
momorphism between two coalgebras (S1,q1) and (Sa,¢2) of T is a function h: S; — Sy such that the
following diagram commutes:

S, . h S

T(S1) T T(S2)

Definition 2.3 (Final Coalgebra). For an endofunctor T': Set — Set, a final coalgebra of T is a
coalgebra (F, next) with next: FF — T(F) such that for every coalgebra (S,¢q) of T there is exactly one
coalgebra homomorphism h: S — F.

Given the finality of some coalgebra (F, next) of T' we have at the same time a

definition principle: any function ¢q: S — T'(S) uniquely determines a function h: S — F', and a

proof principle: Given two functions hy,hy: S — F we can prove them equal by exhibiting some
coalgebra structure ¢g: S — T'(S) that turns both hy and hy into coalgebra homomorphisms.

From now on, a coinductive definition of a function h: S — F' is not a a couple of equations as in
the definition of even in the introduction. Instead, it is a function ¢: S — T'(S). Similarly, proof by
coinduction will not mean a proof using the notion of bisimulation as seen in the introduction but using
the proof principle just given.

2.2 Membership Equational Logic and Maude

Membership Equational Logic (abbreviated MEL) [M98] was conceived in the effort to find “the right”
formalism for equational specification. As such, it should strike a good balance between expressiveness
and simplicity. MEL does so by conservatively extending many- and order sorted equational horn clauses
by so called membership axioms. This allows to express partiality while maintaining good properties of
total equational logics, e.g. an initial algebra semantics.



Basic Definitions (from [M98])

Definition 2.4 (Signature). A signature {2 in membership equational logic is a triple (K, ¥, ) where
K is a set whose elements are called kinds, ¥ = {Xy & } (w,k)ekx=x K 18 @ K* X K-indexed family of function
symbols, and 7 is a function 7: S — K that assigns to each element of a set S of sorts its corresponding
kind. We denote by Sy the set 7=1(k) for k € K.

Intuitively, the above signatures can be seen as an extension of the usual many sorted signatures (whose
sorts are now called kinds) by unary predicates (here called sorts).

Definition 2.5 (Q2-algebra, (2-homomorphism). Given a signature 2, an Q-algebra consists of

1. a many-kinded X-algebra A, together with

2. an assignment to each sort s € S of a subset A; C Ay ().

Given two Q-algebras A and B, an -homomorphism h: A — B is a ¥-homomorphism h: A — B such
that for each sort s € S we have h(5)(As) C Bs.

Definition 2.6 (Sentences). There are two types of atomic formulas, namely:

1. equations of the form t = ¢’ where t,t' € T, (X)y for some k € K, for X a K-kinded set of variables
and T3 (X) the free ¥-kinded algebra on X, and

2. membership assertions of the form ¢ : s, where s € S and ¢t € Tx(X)(s)-

Sentences are universally quantified Horn clauses on these atomic formulas, that is, sentences of the form

@) (YY) t=t < uwu =1 A AUy=U,AWw1:51A.cc AW : Spy
(@) (YY) t:s < w1 =01 A AU, =V AW1:SIA e AWy & Spy

where Y is a K-kinded set containing all the variables appearing in t,t' (resp. t) and the u;,v;, and w;.

Definition 2.7 (Satisfaction). Given an Q-algebra A and a K-kinded set of variables X such that
t,t" € Tx(X) (resp. t € Tx(X)), then satisfaction of an atomic formula ¢t = ¢’ (resp. t : s relative to a
K-kinded function a: X — A, called an assignment of values in A to the variables X, is defined in the
obvious way, that is,

A a Eqt=tiff a(t) = a(t")
AjalEqt:siffa(t) € A

where a: Ty, (X) — A is the unique K-kinded ¥-homomorphism from 7% (X) to A as a X-algebra
extending the assignment a. Similarly, for ¢ a sentence of type (i) (resp. (i7)), we say that A satisfies (,
written A |=q ¢, iff for all K-kinded assignments a: X — A such that A,a |Fq u; = v;,1 < i < n, and
AjalEo wj:s;,1 < j<m, wehave A,a o t =t' (resp. A,a |=q t :s). For I a set of sentences we
write A E=q ' iff for all p € ', A Eq . A theory is a pair Q,I'), with I" a set of Horn Q-sentences. Such
a theory defines a subclass of Q-algebras, that is, those A such that A =q .

Execution in Maude Maude’s functional modules are membership equational logic theories with an
intended initial semantics. Existence of an initial 2-algebra in a membership equationally defined class of
-algebras is proved in [M98]. Intuitively, the underlying ¥-algebra of the initial 2-algebra satisfies only
those ground equations that hold in all models. In addition to that, the initial -algebra only satisfies
those ground memberships that hold in all models.

Consider the following specification of lists in Maude. The keyword fmod declares that the MEL theory
contained has an initial semantics. The usual constructors nil and cons are declared as operators as
well as some functions len and getE1At. Keywords eq, mb, ceq, cmb declare equations, memberships,
conditional equations and conditional memberships, respectively. Sort MachineInt together with func-
tions _<_, _+_and _<=_ are imported from module MACHINE-INT. Note that getE1At is actually a partial
operation, defined only for pairs of an integer and a list, where the length of the list is at least as long as
the integer.



fmod LIST is
including MACHINE-INT .

sorts E1 E17 List .
subsorts E1 < E17 .

op cons : El List -> List .
op nil : => List .
ops abc: ->El.

op len : List -> Machinelnt .
op getElAt : MachineInt List -> E17 .

var L : List .
var E : E1 .
var I : MachineInt .

eq len(cons(E,L)) len(L) + 1 .
eq len(nil) = 0.

ceq getElAt(I,cons(E,L))
eq getElAt(1,cons(E,L))

getE1At(I - 1, L) if I > 1 .
E .

cmb getElIAt(I,L) : E1 if I > 0 and I <= len(L)

endfm

Kinds are now given implicitly by the set of maximal sorts in each connected component of the poset
formed by the sorts with the subsort relation. That is, in our example there are two connected compo-
nents: {E1, E17} and {List}. Their maximal elements are E17 and List, and the corresponding kinds
are denoted Error(E1?) and Error(List), respectively. Those names derive from the intuition that
terms that cannot be assigned a sort are error expressions, i.e. contain functions called with arguments
for which they are not defined.

The subsorts declaration is actually syntactic sugar for

cmb X : E17 if X : E1 .

just as
var E : E1 .
eq len(cons(E,L)) = 1len(L) + 1 .

is syntactic sugar for
ceq len(cons(X,L)) = 1len(L) +1 if X : E1 .

where X is a variable of kind Error (E17).

The above specification can be executed in Maude by rewriting. The equations are thus seen as rewrite
rules oriented from left to right. During the rewriting process, not only the rewrite rules, but also the
membership axioms are applied to lower the sort of an expression. When this process terminates, i.e.
neither rewrite rules nor membership axioms can be applied, the simplified expression together with its
sort is returned:



Maude> red getElAt(2,cons(a,cons(b,cons(c,nil))))
rewrites: 5

result El: b

Maude> red getElAt(4,cons(a,cons(b,cons(c,nil))))
rewrites: 13

result E17: getElAt(1, nil)

Maude> red cons(getElAt(1,nil),nil)

rewrites: 4

result Error(List): cons(getElAt(1, nil), nil)

Module LIST demonstrates the key advantage of membership equational logic over just conditional equa-
tional logic: we easily can express partiality. While partial operations could be encoded in conditional
equational logic by introducing an error expression such as

op error : -> E1 .
ceq getElAt(I,L) = error if I > len(L) or I <1 .

the membership equational approach frees us from having to think about what functions with domain E1
should do with error and is of course less questionable regarding the semantics of E1. While this could
be achieved with in an order-sorted approach as well (by choosing E1? as the domain of error, there
still is a problem: now all undefined terms are equal and reduced to E1? : error. Of course E17:
getE1At (1, nil) is a much more informative error message.

3 Categories

The idea in this work is to use not proof of equality by bisimulation to show theorems in final coalgebras
but instead directly to use their uniqueness property. Neither of those two proof principles is a first
order statement. While the first quantifies over a relation (the bisimulation), the second quantifies over
functions. How then, can I express them in a weak logic as MEL and mechanize them with Maude? The
short answer is: to reason in equalities of morphisms in a category with structure. The long answer is
the remainder of this thesis. To this end, categories are specified in MEL, see module CATEGORY page 6.

A (small) category can be seen as an algebra of functions. Functions are the elements of its carrier set
and the operations of the algebra work on those. As such, a category is a generalization of a monoid:
composition of functions is associative, there is an identity element, but composition now in general is
a partial operation, defined only for composable functions, i.e. two functions where the codomain of the
first coincides with the domain of the second. While total algebras can be easily specified in equational
horn logic, specification of categories requires the additional strength of MEL to express partiality. We
introduce a sort Arrow? on which the (total) composition operator is defined and a subsort Arrow. A
conditional membership asserts that terms with composition as their main constructor, i.e. of sort Arrow?
are of sort Arrow if codomain and domain of its respective arguments are the same.

4 Product and Sum

This section introduces some structure that is used to build endofunctors for the final coalgebras consid-
ered in section 5. This structure consists of products, coproducts (sums) and a terminal object. First, I
specify a cartesian category and present a confluent and terminating rewrite system that decides equali-
ties of well-formed morphisms in the free cartesian category generated by a graph. It forms the basis for
proving coinductive properties by rewriting. Secondly, I show how partiality of the pairing constructor is
expressed in MEL and how Maude can thus check the well-formedness of morphisms. Then I introduce
what will be called a “strictly associative product”, a product that allows us not to worry about associa-
tivity isomorphisms when dealing with nested products. Finally, to enable case analysis, distributivity
of the product over the sum is specified and booleans are exhibited as sum of the terminal object with
itself.



fmod CATEGORY is
sorts Object Arrow Arrow? .

subsorts Arrow < Arrow? .

op id : 0Object -> Arrow .

ops dom cod : Arrow -> Object

op _;_ i Arrow? Arrow? -> Arrow? [ assoc ]
vars F G i Arrow .

vars A : Object .

cmb F ; G : Arrow if cod(F) == dom(G)
ceq id(A) ; F=F if dom(F) == A .
ceq F ; id(A) =F if cod(F) == A .
eq dom( F ; G ) = dom(F)

eq cod( F ; G ) = cod(G)

eq dom(id(A)) = A .

eq cod(id(A)) = A .

endfm

Module 1: A Category

Definition 4.1 (Product). Let A and B be two objects in a category. A (not the) product of A and
B is an object C' together with arrows proj,: C — A and proj,: C — B such that for any object D and
arrows q1: D — A and ¢2: D — B, there is a unique arrow ¢: D — C that makes the following diagram
commute:

D
s
a
A<——C——>B
proji projz
A category in which for any two objects A and B there is a product of A and B is said to have binary
products.

Definition 4.2 (Terminal Object). An object A is called terminal if for every object B (that may be
equal to A) there is exactly one arrow from B to A.

Definition 4.1 gives a binary product. It can be generalized to an n-ary product in the obvious way. A
category having n-ary products for any n € N is said to have finite products. Since n-ary products for
n > 2 can be built using binary products, a category that has binary products and a terminal object has
finite products. A category is called cartesian if it has finite products.

4.1 Specifying a Cartesian Category

The definition of a product involves two aspects: existence of such an arrow ¢ : D — C' and uniqueness
thereof. We specify its existence by simply giving it a name, i.e. introducing the binary constructor



op <_,_> : Arrow Arrow -> Arrow .

called pairing which, given two arrows with the same domain, yields the arrow whose existence is required
by the universal mapping property. The same is done to the product object: given two objects, applying
constructors

op _X_ : Object Object -> Object .
and
ops projl proj2 : Object Object -> Arrow .

yield an object that will satisfy the definition of a product and its projections, respectively.

The diagram in Definition 4.1 can thus be instantiated as:

D

/ ‘ Y\
<Q1¢Q2>

proji projz

and will in the following permit to talk about the product.

Commutativity of the diagram is easily expressed by equations of morphisms:

var A B : Object .
var F G : Arrow .

eq < F,G > ; proji(A,B) = F . (ExP1-2)
eq < F,G > ; proj2(A,B)

I}
]

Uniqueness can be expressed by a conditional equation:

ceq < F,G >=H if H ; projl(cod(F), cod(G))
H ; proj2(cod(F), cod(G))

F and
(UniP?)

1]
(]

Now the product of two arrows can be specified by simply identifying it with its equivalent representation
as a pairing:

op _X_ : Arrow Arrow -> Arrow .

eq Fx G =< proji( dom(F), dom(G) ) ; F ,
proj2( dom(F), dom(G) ) ; G > .

Defining domain and codomain of the introduced morphisms is straightforward:

eq dom( proji(A,B) ) = A x B .
eq dom( proj2(A,B) ) = A x B .
eq cod( proji(A,B) ) = A .
eq cod( proj2(A,B) ) =B .

= dom(F)

eq dom( < F,G > )
eq cod( < F,G > )

cod(F) x cod(G)

Now we just have a category with binary products. For a cartesian category we have to add a terminal
object (the empty product) with its unique morphisms (called bang):



op 1 : -> Object .
op ! : Object -> Arrow .

eq dom(!(A))
eq cod(!(4))

Il
==

Expressing the universal mapping property of the terminal object in MEL is easy:

ceq G = !'(dom(G)) if cod(G) == 1 . (Trm)

All that is said above, dualizes to the cocartesian category. Thus it is possible to specify a cocartesian
category in MEL as well. But since the initial object and its unique maps seem rather useless in building
endofunctors for my purpose, I will contend myself with binary coproducts. The signature looks as
follows:

op _+_ : Object Object -> Object .
ops incl inc2 : Object Object -> Arrow .
op [_,_] : Arrow Arrow -> Arrow .

The axioms are straightforward duals to the ones for the product. See modules PRODUCT and SUM pages
36 and 39 for the full specification.

Notation Equations will be referred to by names put in parentheses such as (ExP1) which denotes the
first equation specifying the existence of the pairing. The dual equation for the copairing will be denoted
(ExS1).

4.2 Deciding the Equality of Morphisms

Every functional Module in Maude has an operational semantics as a rewrite system. Under the usual
confluence and termination assumptions, they may constitute decision procedures for the word problem
in the respective MEL theory. Since I specify categories with additional structure, the word problems
correspond to the question whether two morphisms in the free category with that structure are equal.

Module CATEGORY (page 6) constitutes a decision procedure for the word problem in the free category
generated by a graph. The reasoning is as follows:

1. well-formedness of morphisms is decidable: just check for every composition operator that it is
defined on its arguments. A decision procedure for the word problem may thus rely on well-
formedness.

2. Knowing that only well-formed arrows are given, and that all the equations in module CATEGORY
preserve well-formedness, the conditions of the cmb and the two ceqs will always be fulfilled. We
can thus replace Arrow? by Arrow, drop the cmb and the conditions of the ceqs, turning them into
plain equations.

3. On well-formed arrows, the resulting reduction system (that consists just of the rules for identity
and associativity) is confluent and terminating.

Because in my restricted framework well-formedness of morphisms is decidable, it turns out that member-
ships are not necessary to give decision procedures. The decidability proof for the free cartesian category
generated by a graph can thus be based on a conventional term rewriting system without memberships
or conditions. The reason why in practice I use memberships as well as equations to prove equality of
morphisms is that now Maude is checking the well-formedness of my input — and much better than myself.



Deciding the word problem in cartesian categories The problem with conditional equation
(UniP’) (page 7) is that it cannot be oriented into a conditional rewrite rule, since, either way, the
right-hand-side contains variables that do not occur in the left-hand-side. Thus, it cannot be executed
with Maude.

Fortunately, there is an equivalent equation which can be oriented.

eq < F ; proji(A,B), F ; proj2(A,B) > = F . (UniP)

Lemma 4.3. Assuming the correct definitions of dom and cod, (UniP) is equivalent to (UniP’).

Proof.

“<”: Instantiate (UniP’) with F = F’> ; proj1(A,B), G = F’ ; proj2(A,B) and H = F’, the condi-
tions can be proven using the definitions of dom and cod, now we have (a variant of) (UniP).

“=": To prove (UniP’), apply the equations in its condition to its conclusion, this yields an instance of
(UniP).

O

The resulting term rewriting system is not confluent yet, completion yields 2 more rules:

eqF ; <GH>=<F ; G, F; H>. (CompP)
and
eq < proji(A,B), proj2(A,B) > = id(A x B) . (idP)

With (Trm) (page 8) again the problem is that the conditional equation cannot be executed as a condi-
tional rewrite rule because as such it is obviously not terminating. And again, there is a solution to this
problem:

Lemma 4.4. Assuming the correct definitions of dom and cod and that no arrows with codomain 1 are
introduced in addition to the ones that can be built from the signature so far (identities, compositions,
pairings, projections, bang), the following equations are equivalent to (Trm):

proj,(1,A) =lia (')
projy(4,1) =lax (12)
o= idy (13)

Fila =laomr) (14)

Proof.
“=": Trivial .

“4<": Let G be a term of sort Arrow with cod(G) = 1 and prove G' = !4,,(g) by induction on G: the
induction base is given by equations (!1),(12) and (!3). For the induction step pairings <_,_> need
not be considered because they never have codomain 1. A composition G = (1 ; G2 can have
codomain 1, then G2 has codomain 1, apply the induction hypothesis, now G2 =!44mm(a,) and by

('4) G = !dom(G’)-
O

Assuming that there are no arrows with codomain 1 except the ones mentioned in Lemma 4.4 is of course
very reasonable because any additional arrow f: A — 1 is equal to !4 anyway.



The equations given in Lemma 4.4 can be oriented into rewrite rules and added to the ones for the binary
product. Some critical pairs arise, they are oriented as well, giving rise to the rewrite system in module
CARTESIAN (page 35).

Remark 4.5. The difference between module CARTESIAN and the union of modules CATEGORY, PRODUCT,
and TERMINAL (pages 6, 36, 38, respectively) is that the first is a simple term rewriting system, while the
second is a conditional class rewriting system of congruence classes of terms induced by associativity of
the composition operator. The second also uses memberships and conditional rewrite rules to check the
well-formedness of morphisms, while the first does not.

Theorem 4.6. Equality of morphisms in the free cartesian category generated by a graph is decidable.

Proof.

By Lemma 4.3 and Lemma 4.4 the equational theory in module CARTESIAN indeed specifies the free
cartesian category generated by whatever morphisms one adds as constants.

Termination can be proven by a recursive path ordering with status (to deal with associativity) and the
following ordering on function symbols:

dom = cod > _;. > <,> > projl = proj2 > ! > id

For well-formed arrows, the system is locally confluent. That can be seen by checking that all critical
pairs converge. Confluence (for well-formed arrows) follows from termination and local confluence, as
usual. O

The same holds for the free cocartesian category. Interestingly, the associativity rule has to be reversed,
i.e. shift parentheses to the right rather than to the left as in module CARTESIAN. To reason in the union of
both theories, I resort to rewriting modulo associativity, as shown in module CATEGORY. Still: the resulting
system is not confluent (nor confluent modulo associativity when the associativity rule is removed), the
problem is a redex of the form

[ f,g1; <h,j>

which can be reduced using (CompP) as well as (CompS), yielding two terms that are not reducible to
one another. Completion modulo associativity turned out to be next to impossible to do by hand since
critical pairs are numerous and complex.

There is a very recent result by Cockett and Seely [CS00]. They use cut-elimination to prove the de-
cidability of equality of morphisms in the free category with finite products and sums generated by a
graph.

Partiality Of course, just as _;_, the pairing operator <_,_> is partial, defined only on arrows the
domains of which coincide. In module CARTESIAN there is no distinction between defined (well-formed)
and undefined arrows. Just as in most categorical literature it is assumed implicitly that equations only
apply to well-formed arrows, i.e. whenever a user wants to check the equality of two morphisms with
module CARTESIAN, she should first check whether both of them are well-formed. This is a reasonable
assumption at least in our restricted framework, since this property is decidable. But on one hand
this is an error-prone task nevertheless and on the other hand, because of the undecidability of the word
problem in equational theories in general, one can imagine categories with equationally specified structure
that makes the well-formedness of arrows undecidable. Specifying pairing as a partial function can be
accomplished in MEL along the same lines as in module CATEGORY. First, pairing is introduced with
codomain Arrow?

op <_,_> : Arrow Arrow -> Arrow? .
then a conditional membership specifies which arrows are well-formed

cmb < F,G > : Arrow if dom(F) == dom(G)

10



and then all equations are turned into conditional equations to be applicable only in the case of well-
formedness. For example (ExP1) becomes

ceq < F,G>; proji(A,B) =F if dom(F) == dom(G) and
cod(F) == A and
cod(G) == B .

4.3 Strict Associativity

In a category with binary products there are two ways to build a ternary product: A x (B x C) and
(A x B) x C. Categorically, there is no reason to distinguish them since they are canonically isomorphic
by

< proj, (A x B,C) ; proj,(4, B),
< proj,(A x B,C) ; proj,(A, B), proj,(A x B,C) >> (assocLeft)

<< proj (A, B x C), projy(A, B x C) ; proj,(B,C) >,
projs (A, B x C) ; proj,(B,C) > (assocRight)

But when modelling free categories as initial models of some equational theory, two different but isomor-
phic objects are distinguished since they are two different terms. So if two functions f and g have to be
composed, the codomain of the first being A x (B x C) and the domain of the second being (A x B) x C,
we have to explicitly put in the appropriate isomorphism, which does nothing else than shift parentheses
and bloat definitions.

For that reason, defining morphisms by composition in the free category with binary products is a bit
cumbersome. Instead of just writing

eq h=1f;g.
we have to write

eq h=f; << projl(A, B x C) , proj2(A, B x C) ; proji(B, C) > ,
proj2(A, B x C) ; proj2(B, C)
> g .

To avoid that, the reasoning is better done in a different but equivalent category, the free category with
strictly associative products:

Definition 4.7 (Strictly Associative Product). A category is said to have strictly associative prod-
ucts iff it has products such that (1) any two objects A x (B x C) and (A x B) x C are equal and (2)
the corresponding isomorphisms coincide with the identity on that object.

Interpretation in Set What I want to reason about are equations of functions, i.e. equations of
morphisms in Set. What I am reasoning about is something else, namely ground equations of morphisms
in a free category with structure. This is not a problem because such ground equations hold in all
categories with that structure (not just the free one) and most of the structure I will consider (finite
products, binary sums, distributivity, final coalgebras of some functors) is available in Set. Thus, ground
equations of morphisms, that hold in the free category with that structure, hold in Set as well. I do
not know, however, whether Set has binary products that are strictly associative. To show that all
my reasoning in the free category with strictly associative products works in Set as well, it suffices to
construct a product preserving functor from the free category with strictly associative products into Set.

The free category with strictly associative products generated by a base category B is denoted Th. The
category in which we want to interpret associative products, called domain, will be denoted D and is

11



required to have binary products. In particular, Set qualifies as domain. I now extend some functor
Mg: B — D to a functor M : Th — D. To do so, I could map a nested binary product in Th onto a
nested binary product in D by choosing a canonical nesting such as shifting parentheses to the right:

M: Ay XX A Ay X (Ay X oo X (Aot X Ap) -+

Then M has to be defined inductively, and the proof that it is well-defined and product-preserving would
also have to involve inductions. Since D has binary products, it also has finite n-ary products with n > 1.
To dispense with induction in the following definition and proof, a nested strictly associative product of
n objects from B in Th is interpreted as an n-ary product in D. A product of n objects Dy ... D, in D
with its projections will be denoted

Dy x---xD,

% \Lpro‘i K
i
D

D1 i Dn

Definition 4.8. Let A= A4; x---x A,,, B=B; x--- X B,, where A ... A,,B; ... B, are objects in B,
m,n > 1. Define M : Th — D as

M(A x B) = M(A) XX M(Ap) X M(B;) x --- x Mg(By)

< proji(M(A; X - x Ay X By X --- X By)), ...,

M(proj, (4, B)) = proj;m (M(A; X -+- X Ay X By X -+ X Byp)) >

) < profmian (M(Ar X oo x Ay X By X - X By)), ...,
M(projs(4,B)) = projmain(M (AL X+ X Ay X By X -+ X By)

< M(f); proj (A1 Aw), . .., M(f) 5 proj.(Ar... An),

M(< f,g> = ! ; %
(<fi9>) M(g) ; proj,(By...By),... ,M(g) ; proj,,(Bi...B,) >
where f and g are morphisms in Th with dom(f) = dom(g)
M(f) = Ms(f)
M(C) = Mg(C)
where f is a morphism and C' is an object in B
M(f 5 9) = M(f); M(g)
M{(idc) = idyc)

where f and g are morphisms and C' is an object in Th with cod(f) = dom(g)

Note that, by definition, M ((A x B) x C') = M (A x (B x ()).

Proposition 1. M is a product-preserving functor.

Proof. To show that M is a functor, we just have to show that it is well-defined, i.e. that diagrams that
are defined to commute in Th are taken to commuting diagrams in D.

Consider the following commuting diagram in Th

<f.g>

AlAm%AlAmXBanHBan
1
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on which M yields the following diagram in D

s M(f) 5 projy;
-, M(g) 5 proj, >

M(A;r ... Ap)

M(Ay) x -+ x M(B) M(B; ...By)

<PTOJ 1 yees ,PTOJ > <PTOJ 150+ 1 PTOJ o >

It is easy to see that the last diagram commutes. Further, it has to be shown in D that for any objects
A, B,C in Th

M (assocLeft) = M (assocRight) = idnr(ayxm(B)xM(C)

where assocLeft: (A x B) x C — A x (B x C) and assocRight: A x (B x C) — (A x B) x C are the
canonical isomorphisms given on page 11. That can be done by applying the inductive definition of M
as much as possible, and then simplifying the result using the identities of the ternary product in D.

It remains to be shown that M preserves products. To that end, consider some h: M(C) — M(A;) x
-++ X M(By) such that

h; < projy,...,proj,, >= M(f) and
h; <proj, iy, proj, ., > = M(g)

Now < M(f); proji,...,M(f); proj,..M(g) ; proj,... ,M(g) ; proj, > can be shown equal to h by
substituting M (f) and M (g) from the last two equations and simplifying the result using the identities
of the three products involved: the m-ary, the n-ary and the (m + n)-ary. [l

To specify strict associativity equationally and to execute it with Maude, module PRODUCT is changed
by making associativity a structural property of constructor _x_ on objects and adding equations that
express property (2) of Definition 4.7.

A BxC

proj (A x B,C) ; proj (A, B) = proj, )
Ax B,C)
)
)

proj,(A, B x C) ;5 projy,(B,C) = proj,
< proj, (A x B,C) ; proj,(A,B) , proj,(A x B,C) > = proj,
< proj (A, B x C) , projy(A, B x C) ; proj,(B,C) > = proj,

A, BxC
AxB,C

(assocP1-4)

~~ I~ A~

Proposition 2. In a category with binary products (assocP1-4) are equivalent to property (2) of Defi-
nition 4.7.

Proof.

e,
:
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< proj, (A x B,C) ; proj, (4, B),
< proji (A x B,C) ; proj,(4, B) , proj,(A x B,C) >>

= <proj;(A,BxC), <proj (A x B,C) ; proj,(A,B) , proj,(A x B,C) >>
(by assocP1)

= <proj,(A,BxC), proj,(A,BxC) >
(by assocP3)

- Z-dA><B><C’
(by idP)

The same can be shown for the inverse isomorphism by (assocP2, assocP4 and idP).

“:>”:
projl(A X B,C) 5 pT‘Ojl(A,B)

tdAxBxC ; projl(A X B,C) ; projl(A,B)

(by left id)

= assocRight ; proj,(A x B,C) ; proj,(A, B)
(by Definition 4.7)
< proj (A, B x C) , projy(A, B x C) ; proj,(B,C) > ; proj,(A, B)
(by ExP1)

= proj,(4,B x C)
(by ExP1)

(assocP2) can be shown by left id, Definition 4.7 choosing assocRight, and twice (ExP2).

< proj,(A x B,C) ; projs(A, B) , proj(A x B,C) >

= assocLeft ; proj,(A,B x C)
(by ExP2)

= idaxpxc ; proj,(A, B x C)
(by Definition 4.7)

= proj,(A,B x C)
(by left id)

(assocP4) can be shown by (ExP1), Definition 4.7 choosing assocRight, and left id.

Proposition 3. In a category with strictly associative products the pairing operator is associative.

Proof.

Let f,g,h be arrows in a category with strictly associative products such that their domains coincide.
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< f,<g,h>>

= < f,<g,h>>; assocRight
(by right id and Definition 4.7)

= << [f,<g,h>>; <proj,(A,B xC), proj,(A,B x C) ; proj,(B,C) >,
< fy<g,h>>; proj,(A,B x C) ; proj,(B,C) >
(by CompP)
= << f,<g,h>>; proj,(4,B x C),
< fy<g,h>>; proj,(A,B x C) ; proj,(B,C) >,h >
(by CompP and twice ExP2)

= << f,g>h>
(by ExP1, ExP2 and ExP1)

O

Thus, associativity can be a structural axiom for the pairing constructor as in module PRODUCT-ASSOC
(page 37). The more properties can be made structural axioms modulo which inferences take place, the
easier the inferences.

4.4 Booleans and Distributivity

Given a terminal object, denoted 1, as given in module CARTESIAN, the simplest interesting data type,
the booleans, can be exhibited as a coproduct. Module BOOLEAN (page 41) introduces some “macros”.
Constants £ and t represent false and true, respectively.

op bool : => 0Object .
ops f t : => Arrow .
ops not and : => Arrow .
eq bool = 1+ 1.

eq f = inci1(1,1)

eq t = inc2(1,1)

Example 4.9. The definition of negation as
eq not = [ t,f]
exemplifies the use of copairing to make a case analysis:

1. if the morphism that we compose to the left of not goes into the first component of the sum (false),
yield true,

2. if it goes into the second component (true), yield false.

The simple statement VA.-—A = A now becomes provable as not ; not = id simply by rewriting. Note
that, since we are talking about equalities of morphisms (or functions), no variables and no universal
quantification are required to express this statement.

Things get a bit more interesting when we define binary functions by case analysis. We cannot just use
copairing since the domain of a copairing is a sum, while the domain of the function we want to define, is
a product (of sums). It turns out that in a category with products and sums in general it is not possible
to express a case analysis on products that considers both arguments. We need the following property:
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Definition 4.10 (Distributive Category). A category is called distributive if it has binary sums and
finite products such that for all objects A,B and C, the unique arrow collect defined by the following
diagram is an isomorphism.

AxB U AxB+AxC" AxC

co‘llect
ida Xincy v 2d A Xinces

Ax(B+C

This differs from the definition given in [BW99] by not requiring an initial object. As mentioned before,
I have no need for it.

The morphism collect required in Definition 4.10 already exists and is unique, it is

[ <p7‘0j1(A,B) ) pr0j2(AaB) ; incl(B7C) >7
< proj,(4,C) , proj,(A,C) ; inca(B,C) > ] (collect)
It is turned into an isomorphism by introducing another arrow

op dist : 0Object Object Object -> Arrow .

and adding the equations requiring that this is the inverse of collect:

distap,c; [ <proj,(A,B), proj,(A,B) ; inci(B,C) >,

Distl
< proj (A,C) , projy(A4,C) ; inca(B,C) > | (Dist1)

tdax(B+C)

[ <proj,(4,B), proj,(A,B) ; inci(B,C) >, (Dist2)
< proj,(A,C) , proj,(A,C) ; inca(B,C) > |; dista p,c =idaxB+axc

Remark 4.11. dista p,c: AXx(B+C) - Ax B+ AxC provides left distributivity. Right distributivity
follows by the commutativity isomorphism of the product and functoriality of the sum:

< projy(B + C, A),proj, (B + C, A) > ; distapc ;
(< projo (A, B) , proj (A, C) > + < projy (A, B) , proj,(4,C) >)

Lemma 4.12. Given a morphisms f: D — A in a distributive category, the following diagrams commute:

<f,g; inci(B,C)>

D Ax (B+C) (Dist3-4)
<f,g>l \LdistA'B'C where i € {1,2} and
g:D—>B,g:D—C,
AXxB—— > AXB+AxC respectively

inc; (AXB,AxC)

fxideyc

D x (B+0C) Ax (B+0C) (Dist5)
distD‘B‘Cl \LdistA)B)c
DXB+DXCW‘AXB+AXC
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<f.,g>

D Ax (B+0C) (Dist6)
<idD7g>i where g: D - B+ C
D x (A + B) dista B, C
diStD'B'Cl

DXB-FDXCWAXB-FAXC

Proof.

<f,g;inci(B,C)>; distapc
= < f,9>; <proj,(A,B), proj,(A,B) ; inci(B,C) > ; dista p,c (by ExP1-2, CompP)
= <f,g>; inci(AxB,AxC);

[ < pT’Ojl(A,B) ) pr0j2(AaB) 5 incl(B7C) >7
< proj,(A,C) , proj,(A,C) ; inca(B,C) > | ; dista,c (by ExS1)
= < f,g>; inci(Ax B,AxC(C) (by Def. 4.10)

The proof of (Dist4) is analogous.

fx tdpyc ; diStA’B7o
= distp,B,c ;
[<p7"0j1(D,B) ) prOjQ(DaB) 5 incl(B7C
< projl(D,C) ) pron(D,C) 5 incz(B,C)
fxidpyc ; disto,B,C (by Def. 4.10)
= distp,p,c; [ <proj,(D,B); f, proj,(D,B :
< proj;(D,C) ;5 f, proj,(D,C) ; inca(B,C) > | ; distapc
=  distpg,c; [ <proj,(D,B); f, proj,(D
< proj,;(D,C) ; f, projy(D
= diStDVB7c ; (f X idp + f x idc)

,B) > ; inci(Ax B,Ax (),
C)>; inc2(AX B,AxC) ] (by Dist3 and Dist4)

)

< f,g>; distap.c
<idp,g>; (f xidpic) ; dist(A, B,C)

= <idp,g>; diStDJg’c ; (indB+indc)
(by Dist5)

O

Those equations are useful in reasoning by case analysis and more complete (not complete — even just
the rules for sum and product are not confluent) when oriented into rewrite rules. Their implementation
in Maude looks almost the same:
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eq < F, G ; inc1(B,C) > ; dist(A,B,C)
= < F,G>; inci(A x B, A x C)

eq < F, G ; inc2(B,C) > ; dist(4,B,C)
= < F,G>; inc2(A x B, A x C)

eq F x id(B + C) ; dist(4,B,C)
= dist(D,B,C) ; ( (F x id(B)) + (F x id(C)) )
eq < F,G > ; dist(4,B,0)
= < id(D), G > ; dist(D,B,C) ;
( (Fxid@®) ) + ( F x id(C) ) )

To conveniently prove equalities of binary functions by case analysis, we have to introduce some more
machinery.

Lemma 4.13. Given two morphisms in a distributive category as in

f
Ax(B+0C) D
g

f is equal to g if the following two diagrams commute:

, Ax B , o AxC
idAxmy %jl(B,C') zd;;xm% %jﬂB,C)
Ax(B+0C) Ax(B+0C) Ax(B+0) Ax(B+0C)
D D
Proof.
f=y
& collect ; f = collect ; g (collect is an isomorphism)
&=
inc1(Ax B,Ax () ; collect ; f
= 4 Ax B,Ax(C); collect ;
and iney (4 X C); collect 5 g (Uniqueness of Copairing)
inca(A x B,A x C) ; collect ; f
= incy(Ax B,AxC); collect ; g
=

(ida x incy (B,

B,C

= (ida x inc (B,C
(ida xcinen (ExS1 applied on both sides of
(ida x incy (B, C)) ; both equations)

= (ida x inc (B,C

Q %
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Lemma 4.14. given two morphisms in a distributive category as in

!
(A+B)x(C+D)___E
g9

then f is equal to g if the following holds:

(inc1(A, B) x inc1 (C, D)) ; f (inci1 (A, B) x inc1(C,D)) ; g and
(inc1 (A, B) x inca(C,D)) ; f = (inc1(A, B) x inc2(C,D)) ; g and
(inca(A, B) x inci1(C, D)) ; f = (inca(A, B) x inc1(C,D)) ; g and
(inca(A, B) X inc2(C, D)) ; f = (inc2(A, B) x inca(C, D)) ; g

Proof. An analogon to Lemma 4.13 can be proven for the case that the sum is the first component of the
product. Using it together with Lemma 4.13 yields the desired result. O

Example 4.15. We can define conjunction using the distributivity isomorphism as

eq and = dist(bool,1,1) ;
( proji(bool,1) + proji(bool,1) ) ;
[ [£f,f1,
id(bool)
]

Here we make a case analysis on the second argument:

1. if it is false we return false no matter what the first argument,

2. if it is true, we return the first argument.

Commutativity of conjunction can now be proven as

< proj2(bool,bool), projl(bool,bool) > ; and = and

using Lemma 4.14. The four resulting proof obligations are reduced to true, which is hardly surprising
since this corresponds to a proof by truth tabling.

5 Final Coalgebras

To represent, coalgebras of an endofunctor, I first define the endofunctor as a function on arrows and
objects. The functor T'(X) = A x X for streams over A is function strfunc and looks as follows:

var A : Object .
var F : Arrow .

op strfunc : Object -> Object .
op strfunc : Arrow -> Arrow .

eq strfunc( F ) = id(setA) x F .
eq strfunc( A ) = setA x A .

The constant setA is of type Object and represents the set A. The constructor _x_ defined both on
objects and arrows is defined in module PRODUCT. That strfunc really is a functor follows from an easy
computation that can even be done by Maude. To that end, skolem constants
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ops mn : -> Arrow .
ops o ol o2 : -> Object .

eq dom(m) = ol .
eq cod(m) = o .
eq dom(n) = o .
eq cod(n) = o2 .

have to be introduced, and the following reductions are carried out by Maude:

Maude> red strfunc( m ; n ) == strfunc(m) ; strfunc(n)

reduce in STREAMS : strfunc(m ; n) == strfunc(m) ; strfunc(n)
rewrites: 103

result Bool: true

Maude> red strfunc(id(o)) == id(strfunc(o))

rewrites: 13

result Bool: true

Now the final coalgebra, for example the set of streams over A can be introduced as an object streams
and its coalgebra structure as an arrow, which is denoted next acording to the intuition that coalgebras
represent state spaces and their structure the transition to the next state.

op next : -> Arrow .
op streams : -> Object .

eq dom(next) = streams .
eq cod(next) = strfunc(streams)

Finality of the coalgebra can be expressed along the same lines that the universal mapping property of
the product was expressed:

First, corecursion on streams is introduced as a constructor on morphisms

var Q : Arrow .
op corec-str : Arrow -> Arrow? .

dom(Q)

streams .

eq dom(corec-str(Q))
eq cod(corec-str(Q))

cmb corec-str(Q) : Arrow if cod(Q) = strfunc(dom(Q))

and its definition principle (existence) and proof principle (uniqueness) as conditional equations, that
express that, given some arrow ¢ there is exactly one arrow, denoted corecst,.(q), that makes the following
diagram commute (streams over A denoted as AV):

corecser (q)

S AN
7(S) T(AY)

T(corecstr(q))

Since variables are capital letters in Maude by convention, the Q corresponds to the arrow ¢ in the diagram
above. The first conditional equation says that corec-str(Q) (if defined) is a coalgebra homomorphism,
while the second says that any arrow that is a coalgebra homomorphism from the coalgebra with structure
Q to the final coalgebra (streams) is equal to corec-str(Q).

20



var Q G : Arrow .

ceq corec-str(Q) ; next = Q ; strfunc(corec-str(Q))
if corec-str(Q) : Arrow .

ceq G = corec-str(Q) if G ; next == Q ; strfunc(G) and
dom(G) == dom(Q) and
cod(G) == streams .

Some function f: S — AN that is defined corecusively by a coalgebra structure q: S — T'(S) is expressed
as follows:

op f : -> Arrow .
eq f = corec( q)

Consider the example of the function even: AN — AN from the introduction. Its coinductive definition
(a coalgebra structure) g: S — T'(S) is

next ; proj,(A, AV) 5 neat

as you can see by checking the commutativity of the following diagram:

even

AN AN

newt
A x AN
projo(A,AY) next
AN

next

Ax AN ————— 4 x AN
ida X even

The definition in membership equational logic thus looks as follows:
op even : -> Arrow .
eq even = corec-str( next ; proj2(setA,streams) ; next )

Using the approach outlined above, it is possible to state coinductive definitions in membership equa-
tional logic and to prove coinductive properties using the conditional equation expressing uniqueness of
a homomorphism into the final coalgebra (examples will be shown throughout the rest of this section).
However, I do not have a full-fledged theorem prover for membership equational logic. Maude can mech-
anize reasoning in MEL theories by rewriting, but for that, the theories have to be oriented into confluent
and terminating conditional rewrite rules. The uniqueness condition can not be executed as a conditional
rewrite rule, since there is a variable in the right hand side that does not occur in the left hand side.
Unlike the case of the product and the sum, there now is no easy way to remedy that.

Given two morphisms from some domain into the final coalgebra, showing that they are equal requires
exhibiting some coalgebra structure on the domain that turns both into coalgebra homomorphisms.
Except for simple cases, e.g. where one morphism is the identity or is defined corecursively, this is a
problem that can not be solved automatically and will require user interaction.

However, that does not mean that Maude cannot help in proving some theorems coinductively. It just
means that the coinduction principle cannot be applied automatically. I will use Maude to prove equations
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by rewriting in the theory without uniqueness, that is, I underspecify the final coalgebra. To prove an
equation f = g by coinduction I come up with some coalgebra structure g and check the commutativity
of diagrams

S % AN S % AN
q \L l next and q l \L next

by reducing the following in Maude:

Maude> reduce f ; next == q ; strfunc(f)
and
Maude> reduce g ; next == q ; strfunc(g)

If both of those equations are reduced to true, I conclude that f = g holds by uniqueness. Since Maude
does not know about uniqueness, of course, the commutativity of the two diagrams above can only be
shown if it does not depend on uniqueness. In the upcoming subsection about natural numbers there will
be a proof that requires two applications of the uniqueness principle.

In general, such proofs by reduction fail. Be it that the rewriting system is not confluent, that the chosen
coalgebra structure is wrong, that more than one application of the uniqueness principle is necessary —
or maybe the statement to be proved is wrong in the first place. Whatever the reason, we would like to
know why.

A way to find out is to inspect normal forms. If the commutativity of the first diagram can not be proved,
the normal forms of its two paths can be obtained by

Maude> reduce f ; next .
Maude> reduce q ; strfunc(f)

Maybe they mostly are equal and it is more promising to use congruence and to try to prove the equalities
of the terms at the differing positions. Otherwise one has to revise q.

Since this methodology relies on a human inspecting normal forms to guess what lemmas could be useful,
introducing corec-str as a constructor and defining a function f by identifying it with (i.e. rewriting it
to) corec-str(q) is a bad idea. While for £ some short and descriptive name can be chosen, q usually
is a rather large term that does not surrender upon first sight the function it defines. So, instead of
corec( next ; proj2(seth,streams) ; next ) we would like to see even in the normal forms. This
is achieved by (under)specifying even directly:

op even : -> Arrow .

eq dom(even) = streams .

eq cod(even) = streams .

eq even ; next = (next ; proj2(sethA,streams) ; next) ; strfunc(even)

5.1 Streams

Given some fixed set A, the final coalgebra of the functor T'(X) = A x X turns out to be the set of infinite
lists (called streams) over A, denoted AN. Its coalgebra structure is the function next: AN — A x AN
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that, given a stream, returns a tuple with the first element and the tail of the stream. It is final since,
given some set S and some function ¢: S — A x S, we can define a function corecs,.(q) that sends an
element s of S to the stream that arises by iterative application of ¢, starting with s. This function is a
coalgebra homomorphism because it makes the following diagram commute:

corecstr(q)

§ —————— AN

q \Lnewt

- N
A x SidAxcorecs”(q)A x A

Since ¢ and next have products as their codomain, there have to be pairings < ¢1,¢o >= ¢ and <
head, tail >= next. The last diagram can thus be decomposed into

) AN S corecser(q) AN
head

R / and a2 l l tail
A

corecstr(q)
That corecg,-(q) is the only such homomorphism now follows (1) from the fact that two streams are equal
if at each position, their elements are equal, (2) the element at position n can be obtained by applying tail
n — 1 times, the head, and (3) an induction over how many times tail is applied. The two last diagrams
give induction base and induction step, respectively.

corecstr (g

S

Using the finality of AN with < head, tail >, we corecursively define morphisms merge: AN x AN — AN,
odd, even: AN — AN (from [JRIT7])

eq merge ; head projl(streams, streams) ; head .

eq merge ; tail = < proj2(streams, streams) ,
projl(streams, streams) ; tail > ;
merge .
eq odd ; head = head .
eq odd ; tail = tail ; tail ; odd .
eq even = tail ; odd .

Merging two streams, the head of the result is the head of the first stream, and the tail of the result is
the same as merging the second with the tail of the first. The head of the stream of all elements at odd
positions of a stream is the head of the original stream and the tail can be obtained by removing the two
first elements from the original stream and the taking the stream of all elements at odd positions.

The only difference from the definitions in [JR97] is that they use variables and lambda abstraction to
define these functions elementwise while I use categorical combinators.

Now we can mechanize the proof from [JR97] that merging the two streams that arise by taking all the
elements at odd and even positions respectively, yields the original stream.

< odd, even >; merge = idn

As mentioned earlier, this equation can not be proven automatically by reduction in Maude, since we
have not formalized the uniqueness property. The user has to make the decision to apply coinduction,
i.e. try to prove that

< odd, even >; merge; < head, tail > = < head, tail >; (ida x < odd, even >; merge)
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and

idqn; < head, tail > = < head, tail >; (ida X idan)
both of which can be reduced to true in Maude.

Maude> reduce in STREAMS : < odd,even > ; merge ; < head,tail > ==

< head,tail > ; strfunc(< odd,even > ; merge)
rewrites: 289
result Bool: true

Maude> reduce in STREAMS : id(streams) ; < head,tail > ==

< head,tail > ; strfunc(id(streams))
rewrites: 24
result Bool: true

5.2 Natural Numbers

Natural numbers or more correctly the completed natural numbers, denoted N, i.e. the set of all naturals
and one more element, called infinity and denoted oo, is the final coalgebra of the functor T'(X) = 1+ X.

The intuition is the following: Given elements from some set S, and some function next: S - 14 S, we
can apply next to receive either some new element of S or the only element of the singleton. Let’s say we
do not know anything about those elements. So the only way we can distinguish them is by how often
we can apply next successively. If this is once, we call the element 0, twice, we call it 1 and so on. Of
course, it may also happen that applying ¢ indefinitely often will always result in some new element of
S. In that case we call it co. Identifying all elements in S that are not distinguishable, i.e. taking the
final coalgebra of endofunctor T on sets, gives us the completed naturals. The coalgebra structure next
is essentially the predecessor, except that its codomain are not the naturals since at zero it yields the
element of the singleton. A predecessor pred: N — N (that loops at zero) can be defined as the unique
function that makes the following diagram commute.

pred

2l

predstruct next

1

%
+ <~z

— —
N td1+pred 1 N

+

What should predstruct look like? Knowing the intended meaning of pred and next, we know that
predstruct ; (id; + pred) should be the following:

* T <2
r—er—2 l<r<o
o0 T = 00

Thus, predstruct should be defined as

* T <2
r—<cr—1 1<zr<

©.¢) r = o0

This function can be represented as a morphism in a category with sums, terminal object and final
coalgebra object:

24



eq predstruct = mnext ; [ incl(l,nat),
next ; ( id(1) + succ )

]

The successor can not be defined corecursively. The problem is, that a function ¢: N — 1 + N to make
this diagram commute

succ

N N
Q\L \Lnewt
1+N———>1+N

id1+succ
would have to send 0 to some z € N such that succ(z) = 0. There are no such elements and therefore
there is no such function gq.

We can, however, define the successor by composition: succ = inco(1,N) ; next™'. The inverse of next
can be defined corecursively as corec(id; + next). It will be denoted nextinv. Functions corec(idy + newxt)
and next ! are indeed equal, since next ! makes the corresponding finality diagram commute and there
can only be one such function.

To prove pred(succ(z)) = x we now try to prove that pred ; succ is a endomorphism on the final coalgebra
and thus equal to idg.

Maude> reduce succ ; pred ; next == next ; natfunc( succ ; pred )
which is false. Inspecting the normal forms by

reduce succ ; pred ; next .

rewrites: 758

result Arrow: next ; [incl(1l, nat),next ; nextinv ; inc2(1, nat) ; nextinv ;
pred ; inc2(1, nat)]

reduce next ; natfunc(succ ; pred)

rewrites: 227

result Arrow: next ; [incl(l, nat),inc2(1, nat) ; nextinv ; pred ; inc2(1,
nat)]

reveals that they differ only in a “next ; nextinv” occuring in the first normal form that does not
appear in the second. This can be dropped since nezt ; next~' is a homomorphism on the final coalgebra
and thus equal to idg.

That can be shown by reducing

next ; nextinv ; next == next ; natfunc(next ; nextinv)
to true. We can now add

eq next ; nextinv = id(nat)

as a lemma to our rewrite system to prove the original equation automatically.
The constant 0 can easily be defined corecursively as

zero

1 N
incy l \Lnezt
1+1 +N

idy,+zero
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Virtue of the coalgebraic (as opposed to the algebraic) definition of the naturals is the ease in defining
binary functions. While one has to resort to function types and currying to inductively define addition of
naturals, defining it coinductively is straightforward. We just have to come up with a function addstruct
such that commutativity of the following diagram forces add to be addition:

— — add —
NXxN——N
addstruct \Lnewt
I1+NxN——>1+N

id1+add

Thus, addstruct should be defined as

* n=n" =0
(n,n) =< (n,n'=1) n=0 n" >0
(n,n—1) n>0

This is now represented using categorical combinators. To acquire information about a natural number
(i.e. to know whether it is 0 or not) nezt is applied. “Destructor” seems quite an apt name for it, which is
why the first argument is copied before applying nezt. The distributivity isomorphism is put in explicitly,
the “—1” is now implicit in the next. The case analysis is now structured into two nested copairings.
Note that,

1. there is a reason I chose (n',n — 1) in the last case instead of (n — 1,n') which would have been
correct, too. Opting for the second, I would have had to insert the commutativity isomorphism (<
proj2(nat, nat), projl(nat, nat) >) before the last inclusion in the definition below, and

2. that I use strict associativity: the second argument of the outer copairing should have domain
(N x N) x N but the domain of proj2(nat, nat x nat) is N x (N x N)

eq addstruct =
< id(nat x nat), projl(mat, nat) ; next > ;
dist(nat x nat, 1, nat) ;
L
projl(nat x nat, 1) ;
( id(nat) x next ) ;
dist(nat,1,nat) ;
L
proj2(nat,1) ;
inc1(1, nat x nat),

inc2(1, nat x nat)

1,

proj2(nat, nat x nat) ;
inc2(1, nat x nat)

The only statement about add that I was able to prove automatically with Maude was
< zero , zero > ; add = zero

(again by manually applying the uniqueness principle). I did not spend much time on more useful prop-
erties, such as commutativity. Proving automatically that this corecursive add does indeed correspond
to our notion of addition of naturals, i.e. that

add(zero,z) =x A add(succ(x),y) = succ(add(z,y))
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did not succeed by just applying uniqueness and then automatically rewriting. This is of course just
a problem of which tool to choose for reasoning in those theories. The propositions are true, they
are proven (using bisimulation) in [R96]. Surely replacing Maudes rewrite engine by some interactive
equational theorem prover would help.

5.3 Sequences

The union of the set of streams and the set of (finite) lists over some fixed set A is called the set of
sequences over A and denoted A*°. Together with a function next: A — 1+ A x A* it is the final
coalgebra of the functor T(X) = 1 + A x X. Intuitively, a coalgebra of this functor is a deterministic
automaton or a process and its coalgebra structure the transition to the next state. There is no input and
the output alphabet of the automaton is A. Given some state of the automaton, applying next either yields
an element of A together with the next state or it yields %, meaning that now the automaton has reached
a final state and terminated. In the final coalgebra all states that are bisimilar, i.e. not distinguishable
using next, are identified. Its elements thus correspond to the behaviours that the states of an automaton
exhibit. And those behaviours correspond to sequences over A. Seen in this light, streams are behaviours
of deterministic automata that cannot terminate, i.e. where each state has exactly one transition to a
next state.

We now define the empty sequence nil: 1 — A, the sequence constructor cons: A x A* — A% the tail
tail: A — A and concatenation conc: A® x A* — A on sequences, by exhibiting the appropriate
coalgebra structures:

eq nilstruct = incl(l, setA x 1)

eq nextinvstruct = 1id(1) + (id(setA) x next)
eq cons = inc2(1l, setA x seq) ; nextinv .
eq tailstruct = mnext ; [

inc1(1, sethA x seq) ,

proj2(sethA, seq) ; next ;
(id(1) + < proji(setA, seq) , cons >)

]
eq concstruct = < id(seq x seq) ,
projl(seq, seq) ; next
>3
dist(seq x seq, 1, setA x seq) ;
L

projl(seq x seq, 1) ;
( id(seq) x next ) ;
dist(seq, 1, setA x seq);
L
proj2(seq, 1) ;
inc1(1, setA x seq x seq)
< proj2(seq, setA x seq) ,
projl(seq, sethA x seq) > ;
inc2(1, setA x seq x seq)
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( proj2(seq, seq) x id(setA x seq) ) ;
< proj2(seq, sethA x seq) ,

projl(seq, setA x seq) > ;
inc2(1, setA x seq x seq)

]

Since the completed naturals can be seen as a special case of sequences where A = 1, the functions
defined above are generalizing zero, succ, pred and add, respectively, and so are their defining coalgebra
structures. The only difference lies in concstruct: the commutativity isomorphism is used twice, but does
not occur in addstruct. As noted before, we could introduce it in addstruct as well, it would not make a
difference since add is commutative. But conc is not, therefore the isomorphism in concstruct is crucial.

Proving cons ; tail = proj, now is a bit more complex than proving pred ; succ = idy. To prove the
second equation coinductively, coming up with the appropriate defining coalgebra structure is immediate,
because idy is a coalgebra homomorphism on the final coalgebra. But of course proj, is not. Here we
have to find a function projstruct that makes the following diagram commute:

PToj,

A x A® A

projstructl \L next

1+ AXAXA® ————=> 1+ A X A®

id1+ida X proj,

That is easy in this case since all that has to be done is applying next and making sure that the result
appears in the appropriate places in the ternary product. The following definition does the job.

eq projstruct = proj2(setA, seq) ; next ;
( id(1D)
+
< projl(setA, seq) , id(setA x seq) >
)

We can check whether this coalgebra structure does indeed define proj, by executing
Maude> reduce proj2(setA, seq) ; next == projstruct ; seqfunc(proj2(seth, seq))

where seqfunc is the functor for sequences T'(X) = 1+ A x X. The equation reduces to true.
Knowing that, we can prove cons ; tail equal to proj, by showing that it too makes the above diagram
commute.

Maude> reduce cons ; tail ; next == projstruct ; seqfunc(cons ; tail)

also yields true.
Not surprisingly, < nil , nil > ; conc = nil can also be proven.

Streams over A are a subset of the sequences over A. The corresponding inclusion can be defined
corecursively:

incstr

AN A%

<head,tail>l

A x AN next

in@l

L4 Ax AN ——————> 14 A x A®

id1+id a X incstr
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Now we want to prove that conc(z,y) is not distinguishable from z if = is an infinite sequence (i.e. a
stream). We thus prove that in the final coalgebra the two are equal. Rephrasing this in element-free
language yields incstr x ida~ ; conc = proj, (AN, A®) ; incstr.

Here again we have to come up with the appropriate coalgebra structure that allows to show equality by
uniqueness. We find that

eq projincstrstruct = ( < head,tail > x id(seq) ) ;
inc2(1,setA x streams x seq)

does the job since we can prove commutativity of the following diagram by reduction:

proj, ; incstr

AN x A A

<head,tail>Xxid 5 oo \L

AXANXAOO next
14+ A x AN x A 14+ A x A®

idy +1ida X (proj, ; incstr)

Since replacing proj, (AN, A>®) ; incstr by incstr x ida~ ; conc also makes the above diagram commute,
which also can be proven by reduction, we conclude by uniqueness that they are equal.

6 Coinduction Strategies

Strategies are procedures that inspect a proposition that has to be proved and determine what steps
should be taken to prove it. In our categorical framework the difficult, creative part in a coinductive
proof of hy = hs with hy,he: S — F, F being the final coalgebra, is coming up with the appropriate
coalgebra structure g: S — T'(S) that turns both h; and hs into coalgebra homomorphisms. An essential
building block for coinduction strategies would thus be a function, say

op codef : Arrow -> Arrow? .

that, given some morphism h, yields a coinductive definition of h, that is, some ¢ such that h = corec(q).
Such a codef could only be defined on morphisms into the final coalgebra, but would necessarily be partial
even on those since not all such morphisms are coinductively defineable, see e.g. succ. It would also have
to make some choice since two different ¢1,¢2: S — T'(S) might coinductively define the same function,
see e.g. add.

A strategy that has to prove h; = hs could check whether codef is defined on one side of the equation,
and if it is, say on hj, return the resulting proof obligation:

hs ; next = codef (hy) ; T'(hs)

Since most proofs in section 5 involved proving equal a function to either the identity or to some core-
cursively defined function, I already used the definition of codef as

codef (id(F')) = nextcodef (corec(q)) = q.

On isomorphisms, the definition of codef is straightforward, too. That is useful, remember that the
structures of final coalgebras are isomorphisms. For a copairing of two coinductively defined morphisms,
its coinductive definition can be constructed from the coinductive definitions of its arguments.

On other types of morphisms codef can be defined for a specific endofunctor. That happened for functor
T(X) =14 A x X and morphism proj, (see page 28).
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The following table gives a — still rather incomplete — picture of what such a function codef should
look like. (F,next) denotes the final coalgebra, h is some morphism with cod(h) = F and 7 and j are
isomorphisms.

h codef (h)
idp next
corec(q) q
i i; mext; T(i %)
jiq j; codef(q) ; T(j7)
[91,q2] | [codef (q1) 5 T(inci(A, B)),
codef (q2) ; T(inca(A, B))]

7 Conclusions

An approach to coinductive theorem proving has been proposed that is based on the finality of coalgebras
expressed in terms of equalities of morphisms in a category with structure. Such categories have been
specified in membership equational logic, which seems the natural candidate for that purpose because
it supports convenient treatment of partiality. Then the Maude system has been used to prove some
statements about streams, natural numbers and sequences.

This approach allows to prove some inductive and coinductive properties entirely by equational reasoning
because universally quantified first order propositions translate into ground equations of morphisms.
However, complexity does not just vanish. Coinductive function definitions have to be given in categorical
combinator language, i.e. by composing projections, inclusions, pairings, copairings etc. Certainly the
definition of addstruct using elements (page 26) is easier to understand than its transliteration into
combinator language. When defining a binary function by case analysis, nobody wants to worry about
where to insert the distributivity isomorphisms. It has to be seen how this language can be made more
intuitive. Also, just because inductive and coinductive proofs can be reduced to equational proofs, that
by itself does not mean that they become simpler. Their complexity depends on two things:

1. The structure of the underlying category. In the case of streams, this structure consists of the
product only. Since the equality of morphisms in such a categories can be decided by e.g. module
CARTESIAN, proofs are easy to the extent that they can be done automatically by Maude. Sequences,
in contrast, live in a category with product and sum and distributivity of the first over the second.
Equality of morphisms in such categories is widely thought to be decidable, but to my knowledge,
there is no proof of that.

2. The difficulty of finding the right coalgebra structure for applying the coinduction principle. For all
propositions proved in section 5 this structure was found in a straightforward fashion, that could
be mechanized as outlined in section 6. That is not true in general, consider for example

add(suce(z),y) = succ(add(z,y)).

Coinductive proofs have not fully been mechanized inside Maude, because the coinduction principle is
just the inference rule that has not been mechanized. Actually, the user decides to apply coinduction on a
proposition, comes up with the coalgebra structure, determines the resulting proof obligations, uses Maude
to prove them and then concludes that the original proposition must be true. This is necessitated by the
fact that Maude is a rewrite engine, not a theorem prover. In a full-fledged MEL theorem prover, the
coinduction principle can be mechanized as outlined in section 5. Of course Maude/Rewriting Logic could
be used to implement an inductive MEL theorem prover as demonstrated in [CDEM99], or the existing
theorem prover could be extended. The prover there “as is” is not suited for reasoning in structured
categories, because it can prove equations only by rewriting and does not support interactive application
of equations. Basing an interactive MEL theorem prover on Maude has the obvious advantages of
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1. a straightforward representation of the inference rules as conditional rewrite rules and

2. inheriting Maude’s fast rewriting and matching-modulo algorithms.

But even so, it still is a new implementation of an interactive theorem prover and since my interest is
not in writing yet another theorem prover, but in ways to prove coinductive properties equationally, that
should be the last option if none of the existing ones can be adapted to suit this task.

Future Work The foremost task is to find the right ground on which to base tool support for reasoning
in structured categories. While Maude has its merits, “off-the-shelf” provers like Coq, Isabelle and PVS
should be considered. Another question is what other properties besides strict associativity should be
required of the structured category in which is reasoned. An interesting candidate is strict distributivity.
What is its interpretation in Set? Does it simplify definitions and proofs? To aid mechanization, a
decision procedure for equality of morphisms in the free distributive category generated by a graph would
be helpful. Finally, the coinduction strategies outlined in section 6 should be elaborated and extended a
lot.
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fmod CARTESIAN is
sorts Object Arrow .

op id : 0Object -> Arrow .

op _;_ : Arrow Arrow -> Arrow .
op _X_ : Object Object -> Object .
ops projl proj2 : Object Object -> Arrow .
op <_,_> : Arrow Arrow -> Arrow .

op 1 : -> Object .

op ! : Object -> Arrow .

vars F G H : Arrow .
vars A B : Object .

AxB.
AxB.

= A .

B .

= dom(F)

= cod(F) x cod(G)

eq dom( proji(A,B
eq dom( proj2(A,B
eq cod( proj1(A,B
eq cod( proj2(A,B
)
)

) )
) )
) )
) )

eq dom( < F,G >
eq cod( < F,G >
eq dom(!(A)) = A .
eq cod(!'(A)) =1 .

eq F; (G;H) =
eq id(A) ; F = F .
eq F ; id(A) = F

eq < F,G > ; proji(A,B) =F .

eq < F,G > ; proj2(A,B) = G .

eq < F ; proji(A,B), F ; proj2(A,B) > =F .
eq F; <GH> = <F; G, F;H>.

eq < proj1(A,B), proj2(A,B) > = id(A x B)
eq projl(i1,A) = !'(1 x A)

eq proj2(A,1) = !'(Ax 1)

eq !(1) = 1id(1)

eq F ; 1(A) = !'(dom(F))

eq < !(B), F; proj2(1,A) > = F .

eq < F ; proji(a,1), '(B) > = F .

eq < !'(1 x A), proj2(1,A) > = id(1 x A)
eq < proji(A,1), !'(Ax 1) > = id(A x 1)
eq < id(1), F ; proj2(1,A) > F .

eq < F ; proji(A,1), id(1) > = F .

endfm

Module 2: Decision Procedure for the Word Problem in a Cartesian Category
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fmod PRODUCT is

including CATEGORY .

op _X_ : Object Object -> Object .
op _X_ : Arrow Arrow -> Arrow .
ops projl proj2 : Object Object -> Arrow .
op <_,_> : Arrow Arrow -> Arrow? .
vars F G H : Arrow .

vars A B : Object .

eq dom( proji(A,B) ) = A x B .

eq dom( proj2(A,B) ) = A x B .

eq cod( proji(A,B) ) = A .

eq cod( proj2(A,B) ) =B .

eq dom( < F,G > ) = dom(F)
eq cod( < F,G > ) = cod(F) x cod(G)

--— express product as pairing

eq F x G =< proj1( dom(F), dom(G) ) ; F ,
proj2( dom(F), dom(G) ) ; G > .

--- pairing is defined for arrows w/ the same domain only
cmb < F,G > : Arrow if dom(F) == dom(G)

--- existence of pairing

ceq < F,G>; proji(A,B) =F if dom(F) == dom(G) and
cod(F) == A and
cod(G) == B .

ceq < F,G> ; proj2(A,B) =G if dom(F) == dom(G) and

cod(F) == A and
cod(G) == B .

—--- uniqueness of pairing
ceq < F ; proji(A,B), F ; proj2(A,B) > =F if cod(F) == A x B .
--- and this has to be added to make it confluent

ceq F ; <GH> = <F; G, F; H> if dom(G) == dom(H) and
dom(G) == cod(F)

eq < proj1(A,B), proj2(A,B) > = 1id(A x B)

endfm

Module 3: Binary Products
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fmod PRODUCT-ASSOC is

including CATEGORY .

op _X_ : Object Object -> Object [assoc]
op _X_ : Arrow Arrow -> Arrow .

ops projl proj2 : Object Object -> Arrow .

op <_,_> : Arrow Arrow —-> Arrow? [assocl]
vars F G H : Arrow .

vars A B C : Object .

(same statements as in PRODUCT)

--- strict associativity

eq projl(A x B, C) ; proji(A,B) = proji(A, B x C)
eq proj2(A, B x C) ; proj2(B,C) proj2(A x B, C)

eq < proji(A x B, C) ; proj2(A,B), proj2(A x B, C) >
eq < projil(A, B x C), proj2(A, B x C) ; proji(B,C) >

proj2(A, B x C)
projl(A x B, C)

ceq < F,G > ; proji(A, B x C)

if dom(F) == dom(G) and
cod(F) == A x B and
cod(G) == C .

F ; proji(A,B)

ceq < F,G > ; proj2(A x B, C)

if dom(F) == dom(G) and
cod(F) == A and
cod(G) == B x C .

G ; proj2(B,C)

endfm

Module 4: Strictly Associative Product
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fmod TERMINAL is

including CATEGORY .
including PRODUCT-ASSOC .

op 1 : -> Object .
op ! : Object -> Arrow .

var A B : Object .

var F : Arrow .
eq dom(!(A)) = A
eq cod(!(A)) =1.
eq projl(i1,A) = !(1 x A)
eq proj2(A,1) = !'(Ax 1)
eq !(1) = 1id(1)
ceq F ; '(A) = !(dom(F)) if cod(F) ==
ceq < !'(B), F ; proj2(1,A) > = F if cod(F) == 1 x A and
dom(F) == B .
ceq < F ; proji(a,1), '(B) > = F if cod(F) == A x 1 and
dom(F) == B .
eq < !'(1xA), proj2(1,A) > = id(1 x A)
eq < proji(A,1), '(Ax 1) > = id(A x 1)
ceq < id(1), F ; proj2(1,A) > = F if cod(F) == 1 x A and
dom(F) == 1
ceq < F ; proji(a,1), id(1) > = F if cod(F) == A x 1 and
dom(F) == 1

endfm

Module 5: Terminal Object
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fmod SUM is

including CATEGORY .

op _+_ : Object Object -> Object .
op _+_ : Arrow Arrow -> Arrow .
ops incl inc2 : Object Object -> Arrow .
op [_,_] : Arrow Arrow -> Arrow? .
vars F G H : Arrow .

vars A B : Object .

eq cod( inc1(A,B) ) = A + B .

eq cod( inc2(A,B) ) = A + B .

eq dom( inc1(A,B) ) = A .

eq dom( inc2(A,B) ) =B .

dom(F) + dom(G)

eq dom( [ F,G 1)
[ F,G 1) = cod(F)

eq cod( ,
--— express sum as copairing

eq F+G=1[ ; incl( cod(F), cod(G) ),

F

G ; inc2( cod(F), cod(G) ) 1]

--- copairing is defined for arrows w/ the same codomain only
cmb [ F,G 1 : Arrow if cod(F) == cod(G)

--- existence of copairing

ceq incl(A,B) ; [ F,G ] =F if cod(F) == cod(G) and
dom(F) == A and
dom(G) == B .

ceq inc2(A,B) ; [ F,G] =G if cod(F) == cod(G) and

dom(F) == A and
dom(G) == B .

--- uniqueness of copairing
ceq [ inc1(A,B) ; F, inc2(A,B) ; F1 =F if dom(F) == A + B .
-—- and this has to be added to make it confluent

ceq [F,G]1 ;H = [F;H,G; H] if cod(F) == cod(G) and
cod(F) == dom(H)

eq [ inc1(A,B), inc2(A,B) 1 = 1id(A + B)

endfm

Module 6: Binary Sums
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fmod DISTRIBUTIVE is
including CATEGORY .
including PRODUCT-ASSOC .
including SUM .

op dist : Object Object Object -> Arrow .

vars A B CD : Object .
vars F G : Arrow .

eq dom( dist(A,B,C) )
eq cod( dist(A,B,C) )

Ax (B+O0C)
(AxB) + (A xC)

eq dist(A,B,C) ;
[ < proj1(A,B), proj2(A,B) ; incl(B,C)
< proj1(A,C), proj2(A,C) ; inc2(B,C)

s

>
>] = id(A x (B + C))

eq < proji(A,B), proj2(A,B) ; incl(B,C) > ; dist(A,B,C)
= incl(A x B, A x C)
eq < projl(A,C), proj2(A,C) ; inc2(B,C) > ; dist(A,B,C)

inc2(A x B, A x C)

ceq <F, G; inc1(B,C) > ; dist(4,B,C)
= < F,G>; inci(A x B, A x C)

if dom(F) == dom(G) and cod(F) == A and cod(G) == B .
ceq <F, G; inc2(B,C) > ; dist(4,B,C)

= < F,G>; inc2(A x B, A x C)

if dom(F) == dom(G) and cod(F) == A and cod(G) == C .

ceq < F, inc1(B,C) > ; dist(A,B,C)
= < F,id(B) > ; inc1(A x B, A x C)
if dom(F) == and cod(F) ==

ceq < F, inc2(B,C) > ; dist(A,B,C)
= < F,id(C) > ; inc2(A x B, A x C)
if dom(F) == and cod(F) ==

ceq < projl(A, B+ C) ; F, proj2(A, B + C) > ; dist(D,B,C)
= dist(A,B,C) ; ( ( F x id(B) ) + ( F x id(C) ) )
if dom(F) == and cod(F) ==

ceq < F,G > ; dist(A,B,C)
= < id(dom(F)), G > ; dist(dom(F),B,C) ;
( (Fxid(B) ) + ( F x id(C) ) )
if dom(F) == dom(G) and cod(F) == A and
cod(G) == B + C and not isId(F)

op isId : Arrow -> Bool .
eq isId(id(A)) = true .

endfm

Module 7: Distributivity
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fmod BOOLEAN is

including CATEGORY .
including SUM .

including PRODUCT-ASSOC .
including TERMINAL .
including DISTRIBUTIVE .

op bool : => 0Object .
ops £ t : => Arrow .
ops not and : => Arrow .
eq bool = 1+ 1.
eq f = inci1(1,1)
eq t = inc2(1,1)
eq not = [inc2(1,1), inci(1,1)]
eq and = dist(bool,1,1) ;
( proji(bool,1) + proji(bool,1) ) ;
LL£f,f1,
id(bool)
]
endfm

Module 8: Booleans

fmod PARAMETER is
including CATEGORY .
op setA : -> Object .

endfm

Module 9: Parameter Object
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fmod STREAM-FUNCTOR is

including PRODUCT-ASSOC .
including PARAMETER .

var A : Object .
var F : Arrow .

op strfunc : Object -> Object .
op strfunc : Arrow -> Arrow .

id(setA) x F .
setA x A .

eq strfunc( F )
eq strfunc( A )

endfm

Module 10: Functor T'(X) = A x X

fmod NATURALS-FUNCTOR is

including SUM .
including TERMINAL .

op natfunc : Object -> 0Object .
op natfunc : Arrow -> Arrow .

var A : Object .
var F : Arrow .

eq natfunc( F ) = id(1) + F
eq natfunc( A ) =1 + A .

endfm

Module 11: Functor T'(X) =1+ X
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fmod SEQUENCE-FUNCTOR is

including PRODUCT-ASSOC .
including SUM .

including TERMINAL .
including PARAMETER .

var S : Object .
var F : Arrow .

op seqfunc : Object -> Object .
op seqfunc : Arrow -> Arrow .

eq seqfunc( F ) = id(1) + ( id(seth) x F )
eq seqfunc( S ) =1 + ( seth x S )

endfm

Module 12: Functor T(X) =14+ A x X

fmod STREAMS is

including STREAM-FUNCTOR .

ops head tail : -> Arrow .

ops merge odd even : -> Arrow .
op streams : -> Object .

eq dom(head) = streams .

eq cod(head) = setA .

eq dom(tail) = streams .

eq cod(tail) = streams .

eq dom(merge) = streams x streams .
eq cod(merge) = streams .

eq dom(odd) = streams .

eq cod(odd) = streams .

eq dom(even) = streams .

eq cod(even) = streams .

projl(streams, streams) ; head .
< proj2(streams, streams) ,
projl(streams, streams) ; tail > ; merge .

eq merge ; head
eq merge ; tail

eq odd ; head
eq odd ; tail

head .
tail ; tail ; odd .

eq even = tail ; odd .

endfm

Module 13: Streams
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fmod NATURALS is

including DISTRIBUTIVE .
including NATURALS-FUNCTOR .

op
op
eq
eq

ops
eq
eq

eq
eq

ops
eq
eq

eq

eq

ops
eq
eq
eq

eq

endfm

next : -> Arrow .
nat : -> Object .

dom(next) =
cod(next) =

nextinv suc

nat
natfunc(nat)

c : =-> Arrow .

dom(nextinv) = natfunc(nat)

cod(nextinv)

nextinv ; n
succ = 1in

pred predst
dom(pred) =
cod(pred) =

predstruct

pred ; next

Zero zeros
zerostruct
dom(zero)
cod(zero)

zero ; next

nat .

ext = natfunc(next) ; natfunc(nextinv)

c2(1,nat) ; nextinv .
ruct : -> Arrow .

nat

nat

= next ; [ inci(1,nat),
next ; ( id(1) + succ )
]

= predstruct ; natfunc(pred)

truct : -> Arrow .
= inci1(1,1)

1
= nat

= zerostruct ; natfunc(zero)

Module 14: Completed Natural Numbers
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fmod ADD is

including NATURALS .

ops
eq
eq
eq
eq

eq

eq

endfm

addstruct add : -> Arrow .
dom(addstruct) = nat x nat .
cod(addstruct) = 1 + (nat x nat)
dom(add) = nat X nat .
cod(add) = nat .
add ; next = addstruct ; natfunc(add)

addstruct =

< id(nat x nat), projl(mat, nat) ; next > ;
dist(nat x nat, 1, nat) ;

[

projl(nat x nat, 1) ;
( id(nat) x next ) ;
dist(nat,1,nat) ;

L

proj2(nat,1) ;
inc1(1, nat x nat),
inc2(1, nat x nat)

1,

proj2(nat, nat x nat) ;
inc2(1, nat x nat)

Module 15: Addition of Completed Natural Numbers
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fmod SEQUENCES is

including SEQUENCE-FUNCTOR .
including DISTRIBUTIVE .

op
op

ops
ops

eq
eq

eq
eq
eq
eq
eq
eq
eq
eq
eq

eq

next : -> Arrow .
seq : -> Object .

nextinv stail cons : -> Arrow .

proj2struct stailstruct : -> Arrow .
dom(next) = seq .

cod(next) = seqfunc(seq)

dom(nextinv) seqfunc(seq)

cod(nextinv) = seq .

dom(stail) = seq .

cod(stail) = seq .

dom(cons) setA x seq .

cod(cons) = seq .

nextinv ; next = seqfunc(next) ; seqfunc(nextinv)
cons = inc2(1, setA x seq) ; nextinv .
stail ; next = stailstruct ; seqfunc(stail)

stailstruct

eq proj2struct

eq

ops
eq
eq
eq
eq

endfm

= next ; [
inc1(1, sethA x seq) ,

proj2(setA, seq) ; next ;
(id(1) + < projl(setA, seq) , cons >)
]

proj2(setA, seq) ; next ;
[ inc1(1, setA x sethA x seq) ,
< projl(setA, seq) , id(setA x seq) > ;
inc2(1, setA x (setA x seq)) ]

next ; nextinv = id(seq)

nil nilstruct : -> Arrow .

dom(nil) = 1 .

cod(nil) = seq .

nilstruct = 1inc1(1l, setA x 1)

nil ; next = nilstruct ; seqfunc(nil)

Module 16: Sequences
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fmod CONCATENATE is

including SEQUENCES .

ops conc concstruct : -> Arrow .
eq dom(conc) = seq X seq .
eq cod(conc) = seq .
eq concstruct = < id(seq x seq) ,
projl(seq, seq) ; next
>
dist(seq x seq, 1, setA x seq) ;
L

projl(seq x seq, 1) ;
( id(seq) x next ) ;
dist(seq, 1, setA x seq);
L
proj2(seq, 1) ;
inc1(1, setA x (seq x seq))

< proj2(seq, (setA x seq)) ,
projl(seq, (setA x seq)) > ;

inc2(1, setA x seq x seq)

]
( proj2(seq, seq) x id(setA x seq) ) ;
< proj2(seq, setA x seq) ,

projl(seq, setA x seq) > ;
inc2(1, setA x seq x seq)

eq conc ; next = concstruct ; seqfunc(conc) .

endfm

Module 17: Concatenation of Sequences

fmod INCSTR is

including SEQUENCES .
including STREAMS .

op incstr : -> Arrow .

eq dom(incstr) = streams .

eq cod(incstr) = seq .

eq incstr ; next = < head, tail > ; inc2(l,setA x streams) ;

seqfunc (incstr)
endfm

Module 18: Inclusion of Streams into Sequences
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