
Technische Universit�at DresdenF a k u l t �a t I n f o r m a t i k
Diplomarbeitzum ThemaMechanizing Coinduction with MaudeAbstractWhile induction and coinduction both are higher order principles, their underpinnings, initialityof algebras and �nality of coalgebras, can be expressed in membership equational logic. They becomeconditional equations of morphisms in a category with the appropriate structure. By that "elementfree" approach, inductive and coinductive properties can be proved within membership equationallogic. Maude is a tool that mechanizes reasoning in membership equational theories by rewriting.In my thesis I start to investigate this equational approach to coinductive theorem proving, and, inparticular, how it can be supported by Maude.

vonKai Br�unnlergeboren am 28. Mai 1975 in Karl-Marx-Stadt (jetzt Chemnitz)
Verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. habil. Horst Reichel

1

Contents1 Introduction 12 Preliminaries 22.1 Coinductive Reasoning . 22.2 Membership Equational Logic and Maude 23 Categories 54 Product and Sum 54.1 Specifying a Cartesian Category . 64.2 Deciding the Equality of Morphisms . 84.3 Strict Associativity . 114.4 Booleans and Distributivity . 155 Final Coalgebras 195.1 Streams . 225.2 Natural Numbers . 245.3 Sequences . 276 Coinduction Strategies 297 Conclusions 30A Statement of Academical Honesty 33B Maude Functional Modules 34

1 IntroductionData types, like natural numbers, �nite lists etc., are initial algebras. As such, they allow to de�nefunctions on them by induction and to prove properties of those functions by induction. A typicalexample are �nite lists (or words) over some set A denoted A�. The constructors of A� usually aredenoted nil : ! A� and cons : A � A� ! A�. A function from the set of �nite lists over A into someset can be de�ned by giving its values on the constructors. Consider for example the length of a listlen : A� ! N, inductively de�ned aslen(nil) = 0 and len(cons(a; l)) = len(l) + 1:In addition to the de�nition principle there also is a proof principle of induction. Proving that somepredicate P holds for all l 2 A� can be done by proving for all l 2 A� and a 2 AP (nil) and P (l) =) P (cons(a; l)):Behaviours of systems that involve states and transitions between them (automata, transition systems,processes: what could be called process types) are �nal coalgebras. As such, dually to initial algebras, theyprovide the de�nition and proof principle of coinduction. A typical example are outputs of nonterminatingprocesses, in�nite lists (streams) over some set A denoted AN. Instead of constructors we have what couldbe called destructors: head : AN ! A and tail : AN ! AN. Coinduction as a de�nition principle allows tode�ne functions into AN by giving the value of the destructors on it. Consider the de�nition of a functioneven : AN ! AN that returns the stream containing every other element from the original stream:head(even(s)) = head(tail(s)) and tail(even(s)) = even(tail(tail(s))):That even is well-de�ned follows from AN with head and tail being a �nal coalgebra, just as the well-de�nedness of len follows from A� with nil and cons being an initial algebra. The proof principleof coinduction says that, to prove the equality of two streams s1 and s2, it suÆces to exhibit somebisimulation relation R, such that R(s1; s2). Usually the de�nitions of s1 and s2 determine R. A proofby coinduction then amounts to showing that R is a bisimulation, that is, for any streams s1; s2 if R(s1; s2)then head(s1) = head(s2) and R(tail(s1); tail(s2))The proof principle of coinduction follows from the �nality of AN with head and tail , just as the proofprinciple of induction follows from the fact that A� with nil and cons is an initial algebra. Proofs of that,the examples from above treated in more depth and many more are found in [JR97].Considerable work has been done in the area of inductive theorem proving, either by using the inductionprinciple as an axiom in a higher order setting or by making induction an explicit inference rule in a�rst order setting. Coinductive theorem proving has been done usually by describing �nal coalgebras asgreatest �xpoints of endofunctors in higher order logic, see [P97] and [HJ97].If one is interested in using both induction and coinduction in the same proof, a natural question to askis whether the proof then should be carried out at a level where the duality between both principles isreadily apparent. That level is the equality of morphisms in a category with structure, namely initialalgebra objects and �nal coalgebra objects, together with their respective unique homomorphisms. Bymoving to that \element free" abstract level it is possible to greatly simplify the logic used to express theinduction and coinduction principles, because here functions are �rst order elements. Proofs by inductionor coinduction become purely algebraic.Membership equational logic appears to be well-suited for reasoning in those categories because partialitycan be easily encoded. The Maude system [Maude99] mechanizes reasoning in membership equationallogic theories by rewriting. In this thesis I start to investigate this approach to coinductive theoremproving and in particular how the Maude system can help.This work considers coinductive proofs only. But it should be stressed that the general approach dualizesstraightforwardly to inductive proofs, and that the ultimate goal is to mechanize proofs that containinduction and coinduction nested one into another. 1

In the next section some coalgebraic peliminaries are de�ned and a short introduction to membershipequational logic and Maude is given. In section 3 categories are speci�ed in membership equational logic.They are enriched by products, sums and a terminal object in section 4. Final coalgebra objects areconsidered in section 5, the examples treated are streams, (completed) natural numbers and sequences.Maude will be used to prove some simple coinductive properties of those. In section 6 I briey outlinewhat a coinduction strategy is in the context of reasoning in a structured category and present someexamples.2 PreliminariesI assume familiarity with the notions of set, function, category, functor, product, coproduct and the freecategory generated by a graph. A good reference for all of the above is [BW99]. The concept of termrewriting [DJ90], and in particular termination and conuence of a term rewriting system will be usedto decide a word problem. In the next subsection, membership equational logic is introduced as in [M98],for that some basic notions from many-sorted universal algebra are needed.2.1 Coinductive ReasoningDe�nition 2.1 (Coalgebra). For an endofunctor T : Set ! Set, a coalgebra of T is a pair (S; q)consisting of a set S and a function q : S ! T (S) called structure of the coalgebra.De�nition 2.2 (Coalgebra Homomorphism). For an endofunctor T : Set ! Set, a coalgebra ho-momorphism between two coalgebras (S1; q1) and (S2; q2) of T is a function h : S1 ! S2 such that thefollowing diagram commutes:S1 hq1 S2q2T (S1) T (h) T (S2)De�nition 2.3 (Final Coalgebra). For an endofunctor T : Set ! Set, a �nal coalgebra of T is acoalgebra (F;next) with next : F ! T (F) such that for every coalgebra (S; q) of T there is exactly onecoalgebra homomorphism h : S ! F .Given the �nality of some coalgebra (F;next) of T we have at the same time ade�nition principle: any function q : S ! T (S) uniquely determines a function h : S ! F , and aproof principle: Given two functions h1; h2 : S ! F we can prove them equal by exhibiting somecoalgebra structure q : S ! T (S) that turns both h1 and h2 into coalgebra homomorphisms.From now on, a coinductive de�nition of a function h : S ! F is not a a couple of equations as inthe de�nition of even in the introduction. Instead, it is a function q : S ! T (S). Similarly, proof bycoinduction will not mean a proof using the notion of bisimulation as seen in the introduction but usingthe proof principle just given.2.2 Membership Equational Logic and MaudeMembership Equational Logic (abbreviated MEL) [M98] was conceived in the e�ort to �nd \the right"formalism for equational speci�cation. As such, it should strike a good balance between expressivenessand simplicity. MEL does so by conservatively extending many- and order sorted equational horn clausesby so called membership axioms. This allows to express partiality while maintaining good properties oftotal equational logics, e.g. an initial algebra semantics.2

Basic De�nitions (from [M98])De�nition 2.4 (Signature). A signature
 in membership equational logic is a triple (K;�; �) whereK is a set whose elements are called kinds, � = f�w;kg(w;k)2K��K is a K��K-indexed family of functionsymbols, and � is a function � : S ! K that assigns to each element of a set S of sorts its correspondingkind. We denote by Sk the set ��1(k) for k 2 K.Intuitively, the above signatures can be seen as an extension of the usual many sorted signatures (whosesorts are now called kinds) by unary predicates (here called sorts).De�nition 2.5 (
-algebra,
-homomorphism). Given a signature
, an
-algebra consists of1. a many-kinded �-algebra A, together with2. an assignment to each sort s 2 S of a subset As � A�(s).Given two
-algebras A and B, an
-homomorphism h : A ! B is a �-homomorphism h : A ! B suchthat for each sort s 2 S we have h�(s)(As) � Bs.De�nition 2.6 (Sentences). There are two types of atomic formulas, namely:1. equations of the form t = t0 where t; t0 2 T�(X)k for some k 2 K, for X a K-kinded set of variablesand T�(X) the free �-kinded algebra on X , and2. membership assertions of the form t : s, where s 2 S and t 2 T�(X)�(s).Sentences are universally quanti�ed Horn clauses on these atomic formulas, that is, sentences of the form(i) (8Y) t = t0 (u1 = v1 ^ ::: ^ un = vn ^ w1 : s1 ^ ::: ^ wm : sm(ii) (8Y) t : s (u1 = v1 ^ ::: ^ un = vn ^ w1 : s1 ^ ::: ^ wm : smwhere Y is a K-kinded set containing all the variables appearing in t; t0 (resp. t) and the ui; vi, and wj .De�nition 2.7 (Satisfaction). Given an
-algebra A and a K-kinded set of variables X such thatt; t0 2 T�(X) (resp. t 2 T�(X)), then satisfaction of an atomic formula t = t0 (resp. t : s relative to aK-kinded function a : X ! A, called an assignment of values in A to the variables X , is de�ned in theobvious way, that is,A; a j=
 t = t0 i� a(t) = a(t0)A; a j=
 t : s i� a(t) 2 Aswhere a : T�(X) ! A is the unique K-kinded �-homomorphism from T�(X) to A as a �-algebraextending the assignment a. Similarly, for ' a sentence of type (i) (resp. (ii)), we say that A satis�es ',written A j=
 ', i� for all K-kinded assignments a : X ! A such that A; a j=
 ui = vi; 1 � i � n, andA; a j=
 wj : sj ; 1 � j � m, we have A; a j=
 t = t0 (resp. A; a j=
 t : s). For � a set of sentences wewrite A j=
 � i� for all ' 2 �; A j=
 '. A theory is a pair
;�), with � a set of Horn
-sentences. Sucha theory de�nes a subclass of
-algebras, that is, those A such that A j=
 �.Execution in Maude Maude's functional modules are membership equational logic theories with anintended initial semantics. Existence of an initial
-algebra in a membership equationally de�ned class of
-algebras is proved in [M98]. Intuitively, the underlying �-algebra of the initial
-algebra satis�es onlythose ground equations that hold in all models. In addition to that, the initial
-algebra only satis�esthose ground memberships that hold in all models.Consider the following speci�cation of lists in Maude. The keyword fmod declares that the MEL theorycontained has an initial semantics. The usual constructors nil and cons are declared as operators aswell as some functions len and getElAt. Keywords eq, mb, ceq, cmb declare equations, memberships,conditional equations and conditional memberships, respectively. Sort MachineInt together with func-tions < , + and <= are imported from module MACHINE-INT. Note that getElAt is actually a partialoperation, de�ned only for pairs of an integer and a list, where the length of the list is at least as long asthe integer. 3

fmod LIST isincluding MACHINE-INT .sorts El El? List .subsorts El < El? .op cons : El List -> List .op nil : -> List .ops a b c : -> El .op len : List -> MachineInt .op getElAt : MachineInt List -> El? .var L : List .var E : El .var I : MachineInt .eq len(cons(E,L)) = len(L) + 1 .eq len(nil) = 0 .ceq getElAt(I,cons(E,L)) = getElAt(I - 1, L) if I > 1 .eq getElAt(1,cons(E,L)) = E .cmb getElAt(I,L) : El if I > 0 and I <= len(L) .endfmKinds are now given implicitly by the set of maximal sorts in each connected component of the posetformed by the sorts with the subsort relation. That is, in our example there are two connected compo-nents: fEl, El?g and fListg. Their maximal elements are El? and List, and the corresponding kindsare denoted Error(El?) and Error(List), respectively. Those names derive from the intuition thatterms that cannot be assigned a sort are error expressions, i.e. contain functions called with argumentsfor which they are not de�ned.The subsorts declaration is actually syntactic sugar forcmb X : El? if X : El .just asvar E : El .eq len(cons(E,L)) = len(L) + 1 .is syntactic sugar forceq len(cons(X,L)) = len(L) + 1 if X : El .where X is a variable of kind Error(El?).The above speci�cation can be executed in Maude by rewriting. The equations are thus seen as rewriterules oriented from left to right. During the rewriting process, not only the rewrite rules, but also themembership axioms are applied to lower the sort of an expression. When this process terminates, i.e.neither rewrite rules nor membership axioms can be applied, the simpli�ed expression together with itssort is returned: 4

Maude> red getElAt(2,cons(a,cons(b,cons(c,nil)))) .rewrites: 5result El: bMaude> red getElAt(4,cons(a,cons(b,cons(c,nil)))) .rewrites: 13result El?: getElAt(1, nil)Maude> red cons(getElAt(1,nil),nil) .rewrites: 4result Error(List): cons(getElAt(1, nil), nil)Module LIST demonstrates the key advantage of membership equational logic over just conditional equa-tional logic: we easily can express partiality. While partial operations could be encoded in conditionalequational logic by introducing an error expression such asop error : -> El .ceq getElAt(I,L) = error if I > len(L) or I < 1 .the membership equational approach frees us from having to think about what functions with domain Elshould do with error and is of course less questionable regarding the semantics of El. While this couldbe achieved with in an order-sorted approach as well (by choosing El? as the domain of error, therestill is a problem: now all unde�ned terms are equal and reduced to El? : error. Of course El?:getElAt(1, nil) is a much more informative error message.3 CategoriesThe idea in this work is to use not proof of equality by bisimulation to show theorems in �nal coalgebrasbut instead directly to use their uniqueness property. Neither of those two proof principles is a �rstorder statement. While the �rst quanti�es over a relation (the bisimulation), the second quanti�es overfunctions. How then, can I express them in a weak logic as MEL and mechanize them with Maude? Theshort answer is: to reason in equalities of morphisms in a category with structure. The long answer isthe remainder of this thesis. To this end, categories are speci�ed in MEL, see module CATEGORY page 6.A (small) category can be seen as an algebra of functions. Functions are the elements of its carrier setand the operations of the algebra work on those. As such, a category is a generalization of a monoid:composition of functions is associative, there is an identity element, but composition now in general isa partial operation, de�ned only for composable functions, i.e. two functions where the codomain of the�rst coincides with the domain of the second. While total algebras can be easily speci�ed in equationalhorn logic, speci�cation of categories requires the additional strength of MEL to express partiality. Weintroduce a sort Arrow? on which the (total) composition operator is de�ned and a subsort Arrow. Aconditional membership asserts that terms with composition as their main constructor, i.e. of sort Arrow?are of sort Arrow if codomain and domain of its respective arguments are the same.4 Product and SumThis section introduces some structure that is used to build endofunctors for the �nal coalgebras consid-ered in section 5. This structure consists of products, coproducts (sums) and a terminal object. First, Ispecify a cartesian category and present a conuent and terminating rewrite system that decides equali-ties of well-formed morphisms in the free cartesian category generated by a graph. It forms the basis forproving coinductive properties by rewriting. Secondly, I show how partiality of the pairing constructor isexpressed in MEL and how Maude can thus check the well-formedness of morphisms. Then I introducewhat will be called a \strictly associative product", a product that allows us not to worry about associa-tivity isomorphisms when dealing with nested products. Finally, to enable case analysis, distributivityof the product over the sum is speci�ed and booleans are exhibited as sum of the terminal object withitself. 5

fmod CATEGORY issorts Object Arrow Arrow? .subsorts Arrow < Arrow? .op id : Object -> Arrow .ops dom cod : Arrow -> Object .op _;_ : Arrow? Arrow? -> Arrow? [assoc] .vars F G : Arrow .vars A : Object .cmb F ; G : Arrow if cod(F) == dom(G) .ceq id(A) ; F = F if dom(F) == A .ceq F ; id(A) = F if cod(F) == A .eq dom(F ; G) = dom(F) .eq cod(F ; G) = cod(G) .eq dom(id(A)) = A .eq cod(id(A)) = A .endfm Module 1: A CategoryDe�nition 4.1 (Product). Let A and B be two objects in a category. A (not the) product of A andB is an object C together with arrows proj 1 : C ! A and proj 2 : C ! B such that for any object D andarrows q1 : D ! A and q2 : D ! B, there is a unique arrow q : D ! C that makes the following diagramcommute: Dq1 q q2A Cproj1 proj2 BA category in which for any two objects A and B there is a product of A and B is said to have binaryproducts.De�nition 4.2 (Terminal Object). An object A is called terminal if for every object B (that may beequal to A) there is exactly one arrow from B to A.De�nition 4.1 gives a binary product. It can be generalized to an n-ary product in the obvious way. Acategory having n-ary products for any n 2 N is said to have �nite products. Since n-ary products forn > 2 can be built using binary products, a category that has binary products and a terminal object has�nite products. A category is called cartesian if it has �nite products.4.1 Specifying a Cartesian CategoryThe de�nition of a product involves two aspects: existence of such an arrow q : D �! C and uniquenessthereof. We specify its existence by simply giving it a name, i.e. introducing the binary constructor6

op <_,_> : Arrow Arrow -> Arrow .called pairing which, given two arrows with the same domain, yields the arrow whose existence is requiredby the universal mapping property. The same is done to the product object: given two objects, applyingconstructorsop _x_ : Object Object -> Object .andops proj1 proj2 : Object Object -> Arrow .yield an object that will satisfy the de�nition of a product and its projections, respectively.The diagram in De�nition 4.1 can thus be instantiated as:Dq1 <q1;q2> q2A A�Bproj1 proj2 Band will in the following permit to talk about the product.Commutativity of the diagram is easily expressed by equations of morphisms:var A B : Object .var F G : Arrow .eq < F,G > ; proj1(A,B) = F .eq < F,G > ; proj2(A,B) = F . (ExP1-2)Uniqueness can be expressed by a conditional equation:ceq < F,G > = H if H ; proj1(cod(F), cod(G)) = F andH ; proj2(cod(F), cod(G)) = G . (UniP')Now the product of two arrows can be speci�ed by simply identifying it with its equivalent representationas a pairing:op _x_ : Arrow Arrow -> Arrow .eq F x G = < proj1(dom(F), dom(G)) ; F ,proj2(dom(F), dom(G)) ; G > .De�ning domain and codomain of the introduced morphisms is straightforward:eq dom(proj1(A,B)) = A x B .eq dom(proj2(A,B)) = A x B .eq cod(proj1(A,B)) = A .eq cod(proj2(A,B)) = B .eq dom(< F,G >) = dom(F) .eq cod(< F,G >) = cod(F) x cod(G) .Now we just have a category with binary products. For a cartesian category we have to add a terminalobject (the empty product) with its unique morphisms (called bang):7

op 1 : -> Object .op ! : Object -> Arrow .eq dom(!(A)) = A .eq cod(!(A)) = 1 .Expressing the universal mapping property of the terminal object in MEL is easy:ceq G = !(dom(G)) if cod(G) == 1 . (Trm)All that is said above, dualizes to the cocartesian category. Thus it is possible to specify a cocartesiancategory in MEL as well. But since the initial object and its unique maps seem rather useless in buildingendofunctors for my purpose, I will contend myself with binary coproducts. The signature looks asfollows:op _+_ : Object Object -> Object .ops inc1 inc2 : Object Object -> Arrow .op [_,_] : Arrow Arrow -> Arrow .The axioms are straightforward duals to the ones for the product. See modules PRODUCT and SUM pages36 and 39 for the full speci�cation.Notation Equations will be referred to by names put in parentheses such as (ExP1) which denotes the�rst equation specifying the existence of the pairing. The dual equation for the copairing will be denoted(ExS1).4.2 Deciding the Equality of MorphismsEvery functional Module in Maude has an operational semantics as a rewrite system. Under the usualconuence and termination assumptions, they may constitute decision procedures for the word problemin the respective MEL theory. Since I specify categories with additional structure, the word problemscorrespond to the question whether two morphisms in the free category with that structure are equal.Module CATEGORY (page 6) constitutes a decision procedure for the word problem in the free categorygenerated by a graph. The reasoning is as follows:1. well-formedness of morphisms is decidable: just check for every composition operator that it isde�ned on its arguments. A decision procedure for the word problem may thus rely on well-formedness.2. Knowing that only well-formed arrows are given, and that all the equations in module CATEGORYpreserve well-formedness, the conditions of the cmb and the two ceqs will always be ful�lled. Wecan thus replace Arrow? by Arrow, drop the cmb and the conditions of the ceqs, turning them intoplain equations.3. On well-formed arrows, the resulting reduction system (that consists just of the rules for identityand associativity) is conuent and terminating.Because in my restricted framework well-formedness of morphisms is decidable, it turns out that member-ships are not necessary to give decision procedures. The decidability proof for the free cartesian categorygenerated by a graph can thus be based on a conventional term rewriting system without membershipsor conditions. The reason why in practice I use memberships as well as equations to prove equality ofmorphisms is that now Maude is checking the well-formedness of my input { and much better than myself.8

Deciding the word problem in cartesian categories The problem with conditional equation(UniP') (page 7) is that it cannot be oriented into a conditional rewrite rule, since, either way, theright-hand-side contains variables that do not occur in the left-hand-side. Thus, it cannot be executedwith Maude.Fortunately, there is an equivalent equation which can be oriented.eq < F ; proj1(A,B), F ; proj2(A,B) > = F . (UniP)Lemma 4.3. Assuming the correct de�nitions of dom and cod , (UniP) is equivalent to (UniP').Proof.\(": Instantiate (UniP') with F = F' ; proj1(A,B), G = F' ; proj2(A,B) and H = F', the condi-tions can be proven using the de�nitions of dom and cod, now we have (a variant of) (UniP).\)": To prove (UniP'), apply the equations in its condition to its conclusion, this yields an instance of(UniP).The resulting term rewriting system is not conuent yet, completion yields 2 more rules:eq F ; < G,H > = < F ; G, F ; H > . (CompP)andeq < proj1(A,B), proj2(A,B) > = id(A x B) . (idP)With (Trm) (page 8) again the problem is that the conditional equation cannot be executed as a condi-tional rewrite rule because as such it is obviously not terminating. And again, there is a solution to thisproblem:Lemma 4.4. Assuming the correct de�nitions of dom and cod and that no arrows with codomain 1 areintroduced in addition to the ones that can be built from the signature so far (identities, compositions,pairings, projections, bang), the following equations are equivalent to (Trm):proj 1(1; A) = !1�A (!1)proj 2(A; 1) = !A�1 (!2)!1 = id1 (!3)F ; !A = !dom(F) (!4)Proof.\)": Trivial .\(": Let G be a term of sort Arrow with cod(G) = 1 and prove G = !dom(G) by induction on G: theinduction base is given by equations (!1),(!2) and (!3). For the induction step pairings < , > neednot be considered because they never have codomain 1. A composition G = G1 ; G2 can havecodomain 1, then G2 has codomain 1, apply the induction hypothesis, now G2 =!dom(G2) and by(!4) G = !dom(G).Assuming that there are no arrows with codomain 1 except the ones mentioned in Lemma 4.4 is of coursevery reasonable because any additional arrow f : A! 1 is equal to !A anyway.9

The equations given in Lemma 4.4 can be oriented into rewrite rules and added to the ones for the binaryproduct. Some critical pairs arise, they are oriented as well, giving rise to the rewrite system in moduleCARTESIAN (page 35).Remark 4.5. The di�erence between module CARTESIAN and the union of modules CATEGORY, PRODUCT,and TERMINAL (pages 6, 36, 38, respectively) is that the �rst is a simple term rewriting system, while thesecond is a conditional class rewriting system of congruence classes of terms induced by associativity ofthe composition operator. The second also uses memberships and conditional rewrite rules to check thewell-formedness of morphisms, while the �rst does not.Theorem 4.6. Equality of morphisms in the free cartesian category generated by a graph is decidable.Proof.By Lemma 4.3 and Lemma 4.4 the equational theory in module CARTESIAN indeed speci�es the freecartesian category generated by whatever morphisms one adds as constants.Termination can be proven by a recursive path ordering with status (to deal with associativity) and thefollowing ordering on function symbols:dom = cod > ; > < , > > proj1 = proj2 > ! > idFor well-formed arrows, the system is locally conuent. That can be seen by checking that all criticalpairs converge. Conuence (for well-formed arrows) follows from termination and local conuence, asusual.The same holds for the free cocartesian category. Interestingly, the associativity rule has to be reversed,i.e. shift parentheses to the right rather than to the left as in module CARTESIAN. To reason in the union ofboth theories, I resort to rewriting modulo associativity, as shown in module CATEGORY. Still: the resultingsystem is not conuent (nor conuent modulo associativity when the associativity rule is removed), theproblem is a redex of the form[f,g] ; < h,j >which can be reduced using (CompP) as well as (CompS), yielding two terms that are not reducible toone another. Completion modulo associativity turned out to be next to impossible to do by hand sincecritical pairs are numerous and complex.There is a very recent result by Cockett and Seely [CS00]. They use cut-elimination to prove the de-cidability of equality of morphisms in the free category with �nite products and sums generated by agraph.Partiality Of course, just as ; , the pairing operator < , > is partial, de�ned only on arrows thedomains of which coincide. In module CARTESIAN there is no distinction between de�ned (well-formed)and unde�ned arrows. Just as in most categorical literature it is assumed implicitly that equations onlyapply to well-formed arrows, i.e. whenever a user wants to check the equality of two morphisms withmodule CARTESIAN, she should �rst check whether both of them are well-formed. This is a reasonableassumption at least in our restricted framework, since this property is decidable. But on one handthis is an error-prone task nevertheless and on the other hand, because of the undecidability of the wordproblem in equational theories in general, one can imagine categories with equationally speci�ed structurethat makes the well-formedness of arrows undecidable. Specifying pairing as a partial function can beaccomplished in MEL along the same lines as in module CATEGORY. First, pairing is introduced withcodomain Arrow?op <_,_> : Arrow Arrow -> Arrow? .then a conditional membership speci�es which arrows are well-formedcmb < F,G > : Arrow if dom(F) == dom(G) .10

and then all equations are turned into conditional equations to be applicable only in the case of well-formedness. For example (ExP1) becomesceq < F,G > ; proj1(A,B) = F if dom(F) == dom(G) andcod(F) == A andcod(G) == B .4.3 Strict AssociativityIn a category with binary products there are two ways to build a ternary product: A � (B � C) and(A�B)�C. Categorically, there is no reason to distinguish them since they are canonically isomorphicby < proj 1(A�B;C) ; proj 1(A;B);< proj 1(A�B;C) ; proj 2(A;B); proj 2(A�B;C) >> (assocLeft)<< proj 1(A;B � C); proj 2(A;B � C) ; proj 1(B;C) >;proj 2(A;B � C) ; proj 2(B;C) > (assocRight)But when modelling free categories as initial models of some equational theory, two di�erent but isomor-phic objects are distinguished since they are two di�erent terms. So if two functions f and g have to becomposed, the codomain of the �rst being A� (B�C) and the domain of the second being (A�B)�C,we have to explicitly put in the appropriate isomorphism, which does nothing else than shift parenthesesand bloat de�nitions.For that reason, de�ning morphisms by composition in the free category with binary products is a bitcumbersome. Instead of just writingeq h = f ; g .we have to writeeq h = f ; < < proj1(A, B x C) , proj2(A, B x C) ; proj1(B, C) > ,proj2(A, B x C) ; proj2(B, C)> ; g .To avoid that, the reasoning is better done in a di�erent but equivalent category, the free category withstrictly associative products:De�nition 4.7 (Strictly Associative Product). A category is said to have strictly associative prod-ucts i� it has products such that (1) any two objects A � (B � C) and (A � B) � C are equal and (2)the corresponding isomorphisms coincide with the identity on that object.Interpretation in Set What I want to reason about are equations of functions, i.e. equations ofmorphisms in Set. What I am reasoning about is something else, namely ground equations of morphismsin a free category with structure. This is not a problem because such ground equations hold in allcategories with that structure (not just the free one) and most of the structure I will consider (�niteproducts, binary sums, distributivity, �nal coalgebras of some functors) is available in Set. Thus, groundequations of morphisms, that hold in the free category with that structure, hold in Set as well. I donot know, however, whether Set has binary products that are strictly associative. To show that allmy reasoning in the free category with strictly associative products works in Set as well, it suÆces toconstruct a product preserving functor from the free category with strictly associative products into Set.The free category with strictly associative products generated by a base category B is denoted Th. Thecategory in which we want to interpret associative products, called domain, will be denoted D and is11

required to have binary products. In particular, Set quali�es as domain. I now extend some functorMB : B ! D to a functor M : Th ! D. To do so, I could map a nested binary product in Th onto anested binary product in D by choosing a canonical nesting such as shifting parentheses to the right:M : A1 � � � � �Am 7! A1 � (A2 � � � � � (Am�1 �Am) � � �)Then M has to be de�ned inductively, and the proof that it is well-de�ned and product-preserving wouldalso have to involve inductions. Since D has binary products, it also has �nite n-ary products with n � 1.To dispense with induction in the following de�nition and proof, a nested strictly associative product ofn objects from B in Th is interpreted as an n-ary product in D. A product of n objects D1 : : : Dn in Dwith its projections will be denotedD1 � � � � �Dnproj 1 proj i projnD1 � � � Di Dn� � �De�nition 4.8. Let A = A1 � � � � �Am, B = B1 � � � � �Bn where A1 : : : AmB1 : : : Bn are objects in B,m;n � 1. De�ne M : Th! D asM(A�B) = M(A1)� � � � �M(Am)�M(B1)� � � � �MB(Bn)M(proj 1(A;B)) = < proj1(M(A1 � � � � �Am �B1 � � � � �Bn)); : : : ;projm(M(A1 � � � � �Am �B1 � � � � �Bn)) >M(proj 2(A;B)) = < projm+1(M(A1 � � � � �Am �B1 � � � � �Bn)); : : : ;projm+n(M(A1 � � � � �Am �B1 � � � � �Bn)) >M(< f; g >) = < M(f) ; proj 1(A1 : : : Am); : : : ;M(f) ; projm(A1 : : : Am);M(g) ; proj 1(B1 : : : Bn); : : : ;M(g) ; proj n(B1 : : : Bn) >where f and g are morphisms in Th with dom(f) = dom(g)M(f) = MB(f)M(C) = MB(C)where f is a morphism and C is an object in BM(f ; g) = M(f) ; M(g)M(idC) = idM(C)where f and g are morphisms and C is an object in Th with cod(f) = dom(g)Note that, by de�nition, M((A� B)� C) =M(A� (B � C)).Proposition 1. M is a product-preserving functor.Proof. To show that M is a functor, we just have to show that it is well-de�ned, i.e. that diagrams thatare de�ned to commute in Th are taken to commuting diagrams in D.Consider the following commuting diagram in ThCf <f;g> gA1 : : : Am A1 : : : Am �B1 : : : Bnproj 1 proj2 B1 : : : Bn12

on which M yields the following diagram in DM(C)M(f) < M(f) ; proj 1; : : : ;M(f) ; projn;M(g) ; proj 1; : : : ;M(g) ; projm > M(g)M(A1 : : : Am) M(A1)� � � � �M(Bn)<proj1;::: ;projm> <projm+1;::: ;projm+n>M(B1 : : : Bn)It is easy to see that the last diagram commutes. Further, it has to be shown in D that for any objectsA;B;C in ThM(assocLeft) =M(assocRight) = idM(A)�M(B)�M(C)where assocLeft : (A � B) � C ! A � (B � C) and assocRight : A � (B � C) ! (A � B) � C are thecanonical isomorphisms given on page 11. That can be done by applying the inductive de�nition of Mas much as possible, and then simplifying the result using the identities of the ternary product in D.It remains to be shown that M preserves products. To that end, consider some h : M(C) ! M(A1) �� � � �M(Bn) such thath ; < proj 1; : : : ; proj n > =M(f) andh ; < projm+1; : : : ; projm+n > =M(g)Now < M(f) ; proj 1; : : : ;M(f) ; projm;M(g) ; proj 1; : : : ;M(g) ; proj n > can be shown equal to h bysubstituting M(f) and M(g) from the last two equations and simplifying the result using the identitiesof the three products involved: the m-ary, the n-ary and the (m+ n)-ary.To specify strict associativity equationally and to execute it with Maude, module PRODUCT is changedby making associativity a structural property of constructor x on objects and adding equations thatexpress property (2) of De�nition 4.7.proj 1(A�B;C) ; proj 1(A;B) = proj 1(A;B � C)proj 2(A;B � C) ; proj 2(B;C) = proj 2(A�B;C)< proj 1(A�B;C) ; proj 2(A;B) ; proj 2(A�B;C) > = proj 2(A;B � C) (assocP1-4)< proj 1(A;B � C) ; proj 2(A;B � C) ; proj 1(B;C) > = proj 1(A�B;C)Proposition 2. In a category with binary products (assocP1-4) are equivalent to property (2) of De�-nition 4.7.Proof.\(":
13

< proj 1(A�B;C) ; proj 1(A;B);< proj 1(A�B;C) ; proj 2(A;B) ; proj 2(A�B;C) >>= < proj 1(A;B � C) ; < proj 1(A�B;C) ; proj 2(A;B) ; proj 2(A�B;C) >>(by assocP1)= < proj 1(A;B � C) ; proj 2(A;B � C) > (by assocP3)= idA�B�C (by idP)The same can be shown for the inverse isomorphism by (assocP2, assocP4 and idP).\)": proj 1(A�B;C) ; proj 1(A;B)= idA�B�C ; proj 1(A�B;C) ; proj 1(A;B) (by left id)= assocRight ; proj 1(A�B;C) ; proj 1(A;B) (by De�nition 4.7)= < proj 1(A;B � C) ; proj 2(A;B � C) ; proj 1(B;C) > ; proj 1(A;B)(by ExP1)= proj 1(A;B � C) (by ExP1)(assocP2) can be shown by left id, De�nition 4.7 choosing assocRight , and twice (ExP2).< proj 1(A�B;C) ; proj 2(A;B) ; proj 2(A�B;C) >= assocLeft ; proj 2(A;B � C) (by ExP2)= idA�B�C ; proj 2(A;B � C) (by De�nition 4.7)= proj 2(A;B � C) (by left id)(assocP4) can be shown by (ExP1), De�nition 4.7 choosing assocRight , and left id.
Proposition 3. In a category with strictly associative products the pairing operator is associative.Proof.Let f; g; h be arrows in a category with strictly associative products such that their domains coincide.

14

< f;< g; h >>= < f;< g; h >> ; assocRight (by right id and De�nition 4.7)= << f;< g; h >> ; < proj 1(A;B � C) ; proj 2(A;B � C) ; proj 1(B;C) >;< f;< g; h >> ; proj 2(A;B � C) ; proj 2(B;C) > (by CompP)= <<< f;< g; h >> ; proj 1(A;B � C);< f;< g; h >> ; proj 2(A;B � C) ; proj 1(B;C) >; h >(by CompP and twice ExP2)= << f; g >; h > (by ExP1, ExP2 and ExP1)Thus, associativity can be a structural axiom for the pairing constructor as in module PRODUCT-ASSOC(page 37). The more properties can be made structural axioms modulo which inferences take place, theeasier the inferences.4.4 Booleans and DistributivityGiven a terminal object, denoted 1, as given in module CARTESIAN, the simplest interesting data type,the booleans, can be exhibited as a coproduct. Module BOOLEAN (page 41) introduces some \macros".Constants f and t represent false and true, respectively.op bool : -> Object .ops f t : -> Arrow .ops not and : -> Arrow .eq bool = 1 + 1 .eq f = inc1(1,1) .eq t = inc2(1,1) .Example 4.9. The de�nition of negation aseq not = [t,f] .exempli�es the use of copairing to make a case analysis:1. if the morphism that we compose to the left of not goes into the �rst component of the sum (false),yield true,2. if it goes into the second component (true), yield false.The simple statement 8A:::A = A now becomes provable as not ; not = id simply by rewriting. Notethat, since we are talking about equalities of morphisms (or functions), no variables and no universalquanti�cation are required to express this statement.Things get a bit more interesting when we de�ne binary functions by case analysis. We cannot just usecopairing since the domain of a copairing is a sum, while the domain of the function we want to de�ne, isa product (of sums). It turns out that in a category with products and sums in general it is not possibleto express a case analysis on products that considers both arguments. We need the following property:15

De�nition 4.10 (Distributive Category). A category is called distributive if it has binary sums and�nite products such that for all objects A,B and C, the unique arrow collect de�ned by the followingdiagram is an isomorphism.A�B inc1idA�inc1A�B +A� Ccollect A� Cinc2idA�inc2A� (B + C)This di�ers from the de�nition given in [BW99] by not requiring an initial object. As mentioned before,I have no need for it.The morphism collect required in De�nition 4.10 already exists and is unique, it is[< proj 1(A;B) ; proj 2(A;B) ; inc1(B;C) >;< proj 1(A;C) ; proj 2(A;C) ; inc2(B;C) >] (collect)It is turned into an isomorphism by introducing another arrowop dist : Object Object Object -> Arrow .and adding the equations requiring that this is the inverse of collect :distA;B;C ; [< proj 1(A;B) ; proj 2(A;B) ; inc1(B;C) >;< proj 1(A;C) ; proj 2(A;C) ; inc2(B;C) >] = idA�(B+C) (Dist1)[< proj 1(A;B) ; proj 2(A;B) ; inc1(B;C) >;< proj 1(A;C) ; proj 2(A;C) ; inc2(B;C) >] ; distA;B;C = idA�B+A�C (Dist2)Remark 4.11. distA;B;C : A�(B+C)! A�B+A�C provides left distributivity. Right distributivityfollows by the commutativity isomorphism of the product and functoriality of the sum:< proj 2(B + C;A); proj 1(B + C;A) > ; distA;B;C ;(< proj 2(A;B) ; proj 1(A;C) > + < proj 2(A;B) ; proj 1(A;C) >)Lemma 4.12. Given a morphisms f : D ! A in a distributive category, the following diagrams commute:D <f ; g ; inci(B;C)><f ; g> A� (B + C)distA;B;CA�B inci(A�B;A�C) A�B +A� C where i 2 f1; 2g andg : D ! B, g : D ! C,respectively (Dist3-4)
D � (B + C) f�idB+CdistD;B;C A� (B + C)distA;B;CD �B +D � C f�idB+f�idC A�B +A� C (Dist5)

16

D <f ; g><idD ; g> A� (B + C)distA;B;CD � (A+B)distD;B;CD �B +D � C f�idB+f�idC A�B +A� C
where g : D ! B + C (Dist6)

Proof.< f ; g ; inc1(B;C) > ; distA;B;C= < f; g > ; < proj 1(A;B) ; proj 2(A;B) ; inc1(B;C) > ; distA;B;C (by ExP1-2, CompP)= < f; g > ; inc1(A�B;A� C) ;[< proj 1(A;B) ; proj 2(A;B) ; inc1(B;C) >;< proj 1(A;C) ; proj 2(A;C) ; inc2(B;C) >] ; distA;B;C (by ExS1)= < f; g > ; inc1(A�B;A� C) (by Def. 4.10)The proof of (Dist4) is analogous.f � idB+C ; distA;B;C= distD;B;C ;[< proj 1(D;B) ; proj 2(D;B) ; inc1(B;C) > ;< proj 1(D;C) ; proj 2(D;C) ; inc2(B;C) >] ;f � idB+C ; distA;B;C (by Def. 4.10)= distD;B;C ; [< proj 1(D;B) ; f ; proj 2(D;B) ; inc1(B;C) > ;< proj 1(D;C) ; f ; proj 2(D;C) ; inc2(B;C) >] ; distA;B;C= distD;B;C ; [< proj 1(D;B) ; f ; proj 2(D;B) > ; inc1(A�B;A� C) ;< proj 1(D;C) ; f ; proj 2(D;C) > ; inc2(A�B;A� C)] (by Dist3 and Dist4)= distD;B;C ; (f � idB + f � idC)< f; g > ; distA;B;C= < idD; g > ; (f � idB+C) ; dist(A;B;C)= < idD; g > ; distD;B;C ; (f � idB + f � idC) (by Dist5)
Those equations are useful in reasoning by case analysis and more complete (not complete { even justthe rules for sum and product are not conuent) when oriented into rewrite rules. Their implementationin Maude looks almost the same:

17

eq < F, G ; inc1(B,C) > ; dist(A,B,C)= < F,G > ; inc1(A x B, A x C)eq < F, G ; inc2(B,C) > ; dist(A,B,C)= < F,G > ; inc2(A x B, A x C)eq F x id(B + C) ; dist(A,B,C)= dist(D,B,C) ; ((F x id(B)) + (F x id(C)))eq < F,G > ; dist(A,B,C)= < id(D), G > ; dist(D,B,C) ;((F x id(B)) + (F x id(C)))To conveniently prove equalities of binary functions by case analysis, we have to introduce some moremachinery.Lemma 4.13. Given two morphisms in a distributive category as inA� (B + C) fg Df is equal to g if the following two diagrams commute:A�B idA�inc1(B;C)idA�inc1(B;C)A� (B + C)f A� (B + C)gD
A� C idA�inc2(B;C)idA�inc2(B;C)A� (B + C)f A� (B + C)gDProof. f = g(collect ; f = collect ; g (collect is an isomorphism)(inc1(A�B;A� C) ; collect ; f= inc1(A�B;A� C) ; collect ; gand inc2(A�B;A� C) ; collect ; f= inc2(A�B;A� C) ; collect ; g (Uniqueness of Copairing)((idA � inc1(B;C)) ; f= (idA � inc1(B;C)) ; gand (idA � inc1(B;C)) ; f= (idA � inc1(B;C)) ; g (ExS1 applied on both sides ofboth equations)

18

Lemma 4.14. given two morphisms in a distributive category as in(A+B)� (C +D) fg Ethen f is equal to g if the following holds:(inc1(A;B)� inc1(C;D)) ; f = (inc1(A;B) � inc1(C;D)) ; g and(inc1(A;B)� inc2(C;D)) ; f = (inc1(A;B) � inc2(C;D)) ; g and(inc2(A;B)� inc1(C;D)) ; f = (inc2(A;B) � inc1(C;D)) ; g and(inc2(A;B)� inc2(C;D)) ; f = (inc2(A;B) � inc2(C;D)) ; gProof. An analogon to Lemma 4.13 can be proven for the case that the sum is the �rst component of theproduct. Using it together with Lemma 4.13 yields the desired result.Example 4.15. We can de�ne conjunction using the distributivity isomorphism aseq and = dist(bool,1,1) ;(proj1(bool,1) + proj1(bool,1)) ;[[f,f],id(bool)] .Here we make a case analysis on the second argument:1. if it is false we return false no matter what the �rst argument,2. if it is true, we return the �rst argument.Commutativity of conjunction can now be proven as< proj2(bool,bool), proj1(bool,bool) > ; and = andusing Lemma 4.14. The four resulting proof obligations are reduced to true, which is hardly surprisingsince this corresponds to a proof by truth tabling.5 Final CoalgebrasTo represent coalgebras of an endofunctor, I �rst de�ne the endofunctor as a function on arrows andobjects. The functor T (X) = A�X for streams over A is function strfunc and looks as follows:var A : Object .var F : Arrow .op strfunc : Object -> Object .op strfunc : Arrow -> Arrow .eq strfunc(F) = id(setA) x F .eq strfunc(A) = setA x A .The constant setA is of type Object and represents the set A. The constructor x de�ned both onobjects and arrows is de�ned in module PRODUCT. That strfunc really is a functor follows from an easycomputation that can even be done by Maude. To that end, skolem constants19

ops m n : -> Arrow .ops o o1 o2 : -> Object .eq dom(m) = o1 .eq cod(m) = o .eq dom(n) = o .eq cod(n) = o2 .have to be introduced, and the following reductions are carried out by Maude:Maude> red strfunc(m ; n) == strfunc(m) ; strfunc(n) .reduce in STREAMS : strfunc(m ; n) == strfunc(m) ; strfunc(n) .rewrites: 103result Bool: trueMaude> red strfunc(id(o)) == id(strfunc(o)) .rewrites: 13result Bool: trueNow the �nal coalgebra, for example the set of streams over A can be introduced as an object streamsand its coalgebra structure as an arrow, which is denoted next acording to the intuition that coalgebrasrepresent state spaces and their structure the transition to the next state.op next : -> Arrow .op streams : -> Object .eq dom(next) = streams .eq cod(next) = strfunc(streams) .Finality of the coalgebra can be expressed along the same lines that the universal mapping property ofthe product was expressed:First, corecursion on streams is introduced as a constructor on morphismsvar Q : Arrow .op corec-str : Arrow -> Arrow? .eq dom(corec-str(Q)) = dom(Q) .eq cod(corec-str(Q)) = streams .cmb corec-str(Q) : Arrow if cod(Q) = strfunc(dom(Q)) .and its de�nition principle (existence) and proof principle (uniqueness) as conditional equations, thatexpress that, given some arrow q there is exactly one arrow, denoted corecstr(q), that makes the followingdiagram commute (streams over A denoted as AN):S corecstr(q)q ANnextT (S) T (corecstr(q)) T (AN)Since variables are capital letters in Maude by convention, the Q corresponds to the arrow q in the diagramabove. The �rst conditional equation says that corec-str(Q) (if de�ned) is a coalgebra homomorphism,while the second says that any arrow that is a coalgebra homomorphism from the coalgebra with structureQ to the �nal coalgebra (streams) is equal to corec-str(Q).20

var Q G : Arrow .ceq corec-str(Q) ; next = Q ; strfunc(corec-str(Q))if corec-str(Q) : Arrow .ceq G = corec-str(Q) if G ; next == Q ; strfunc(G) anddom(G) == dom(Q) andcod(G) == streams .Some function f : S ! AN that is de�ned corecusively by a coalgebra structure q : S ! T (S) is expressedas follows:op f : -> Arrow .eq f = corec(q) .Consider the example of the function even : AN ! AN from the introduction. Its coinductive de�nition(a coalgebra structure) q : S ! T (S) isnext ; proj 2(A;AN) ; nextas you can see by checking the commutativity of the following diagram:AN evennext ANnextA�ANproj 2(A;AN)ANnextA�AN idA�even A�ANThe de�nition in membership equational logic thus looks as follows:op even : -> Arrow .eq even = corec-str(next ; proj2(setA,streams) ; next) .Using the approach outlined above, it is possible to state coinductive de�nitions in membership equa-tional logic and to prove coinductive properties using the conditional equation expressing uniqueness ofa homomorphism into the �nal coalgebra (examples will be shown throughout the rest of this section).However, I do not have a full-edged theorem prover for membership equational logic. Maude can mech-anize reasoning in MEL theories by rewriting, but for that, the theories have to be oriented into conuentand terminating conditional rewrite rules. The uniqueness condition can not be executed as a conditionalrewrite rule, since there is a variable in the right hand side that does not occur in the left hand side.Unlike the case of the product and the sum, there now is no easy way to remedy that.Given two morphisms from some domain into the �nal coalgebra, showing that they are equal requiresexhibiting some coalgebra structure on the domain that turns both into coalgebra homomorphisms.Except for simple cases, e.g. where one morphism is the identity or is de�ned corecursively, this is aproblem that can not be solved automatically and will require user interaction.However, that does not mean that Maude cannot help in proving some theorems coinductively. It justmeans that the coinduction principle cannot be applied automatically. I will use Maude to prove equations21

by rewriting in the theory without uniqueness, that is, I underspecify the �nal coalgebra. To prove anequation f = g by coinduction I come up with some coalgebra structure q and check the commutativityof diagramsS fq ANnextT (S) T (f) T (AN) and S gq ANnextT (S) T (g) T (AN)by reducing the following in Maude:Maude> reduce f ; next == q ; strfunc(f) .andMaude> reduce g ; next == q ; strfunc(g) .If both of those equations are reduced to true, I conclude that f = g holds by uniqueness. Since Maudedoes not know about uniqueness, of course, the commutativity of the two diagrams above can only beshown if it does not depend on uniqueness. In the upcoming subsection about natural numbers there willbe a proof that requires two applications of the uniqueness principle.In general, such proofs by reduction fail. Be it that the rewriting system is not conuent, that the chosencoalgebra structure is wrong, that more than one application of the uniqueness principle is necessary {or maybe the statement to be proved is wrong in the �rst place. Whatever the reason, we would like toknow why.A way to �nd out is to inspect normal forms. If the commutativity of the �rst diagram can not be proved,the normal forms of its two paths can be obtained byMaude> reduce f ; next .Maude> reduce q ; strfunc(f) .Maybe they mostly are equal and it is more promising to use congruence and to try to prove the equalitiesof the terms at the di�ering positions. Otherwise one has to revise q.Since this methodology relies on a human inspecting normal forms to guess what lemmas could be useful,introducing corec-str as a constructor and de�ning a function f by identifying it with (i.e. rewriting itto) corec-str(q) is a bad idea. While for f some short and descriptive name can be chosen, q usuallyis a rather large term that does not surrender upon �rst sight the function it de�nes. So, instead ofcorec(next ; proj2(setA,streams) ; next) we would like to see even in the normal forms. Thisis achieved by (under)specifying even directly:op even : -> Arrow .eq dom(even) = streams .eq cod(even) = streams .eq even ; next = (next ; proj2(setA,streams) ; next) ; strfunc(even) .5.1 StreamsGiven some �xed set A, the �nal coalgebra of the functor T (X) = A�X turns out to be the set of in�nitelists (called streams) over A, denoted AN. Its coalgebra structure is the function next : AN ! A � AN22

that, given a stream, returns a tuple with the �rst element and the tail of the stream. It is �nal since,given some set S and some function q : S ! A � S, we can de�ne a function corecstr(q) that sends anelement s of S to the stream that arises by iterative application of q, starting with s. This function is acoalgebra homomorphism because it makes the following diagram commute:S corecstr(q)q ANnextA� SidA�corecstr(q)A�ANSince q and next have products as their codomain, there have to be pairings < q1; q2 >= q and <head ; tail >= next . The last diagram can thus be decomposed intoS corecstr(q)q1 ANheadA and S corecstr(q)q2 ANtailS corecstr(q) ANThat corecstr(q) is the only such homomorphism now follows (1) from the fact that two streams are equalif at each position, their elements are equal, (2) the element at position n can be obtained by applying tailn� 1 times, the head , and (3) an induction over how many times tail is applied. The two last diagramsgive induction base and induction step, respectively.Using the �nality of AN with < head ; tail >, we corecursively de�ne morphisms merge : AN �AN ! AN,odd ; even : AN ! AN (from [JR97])eq merge ; head = proj1(streams, streams) ; head .eq merge ; tail = < proj2(streams, streams) ,proj1(streams, streams) ; tail > ;merge .eq odd ; head = head .eq odd ; tail = tail ; tail ; odd .eq even = tail ; odd .Merging two streams, the head of the result is the head of the �rst stream, and the tail of the result isthe same as merging the second with the tail of the �rst. The head of the stream of all elements at oddpositions of a stream is the head of the original stream and the tail can be obtained by removing the two�rst elements from the original stream and the taking the stream of all elements at odd positions.The only di�erence from the de�nitions in [JR97] is that they use variables and lambda abstraction tode�ne these functions elementwise while I use categorical combinators.Now we can mechanize the proof from [JR97] that merging the two streams that arise by taking all theelements at odd and even positions respectively, yields the original stream.< odd ; even >;merge = idANAs mentioned earlier, this equation can not be proven automatically by reduction in Maude, since wehave not formalized the uniqueness property. The user has to make the decision to apply coinduction,i.e. try to prove that< odd ; even >;merge;< head ; tail > = < head ; tail >; (idA � < odd ; even >;merge)23

and idAN;< head ; tail > = < head ; tail >; (idA � idAN)both of which can be reduced to true in Maude.Maude> reduce in STREAMS : < odd,even > ; merge ; < head,tail > ==< head,tail > ; strfunc(< odd,even > ; merge) .rewrites: 289result Bool: trueMaude> reduce in STREAMS : id(streams) ; < head,tail > ==< head,tail > ; strfunc(id(streams)) .rewrites: 24result Bool: true5.2 Natural NumbersNatural numbers or more correctly the completed natural numbers, denoted N , i.e. the set of all naturalsand one more element, called in�nity and denoted1, is the �nal coalgebra of the functor T (X) = 1+X .The intuition is the following: Given elements from some set S, and some function next : S ! 1 + S, wecan apply next to receive either some new element of S or the only element of the singleton. Let's say wedo not know anything about those elements. So the only way we can distinguish them is by how oftenwe can apply next successively. If this is once, we call the element 0, twice, we call it 1 and so on. Ofcourse, it may also happen that applying q inde�nitely often will always result in some new element ofS. In that case we call it 1. Identifying all elements in S that are not distinguishable, i.e. taking the�nal coalgebra of endofunctor T on sets, gives us the completed naturals. The coalgebra structure nextis essentially the predecessor, except that its codomain are not the naturals since at zero it yields theelement of the singleton. A predecessor pred : N ! N (that loops at zero) can be de�ned as the uniquefunction that makes the following diagram commute.N predpredstruct Nnext1 + N id1+pred 1 + NWhat should predstruct look like? Knowing the intended meaning of pred and next, we know thatpredstruct ; (id1 + pred) should be the following:x 7! 8><>:� x < 2x� 2 1 < x <11 x =1Thus, predstruct should be de�ned asx 7! 8><>:� x < 2x� 1 1 < x <11 x =1This function can be represented as a morphism in a category with sums, terminal object and �nalcoalgebra object: 24

eq predstruct = next ; [inc1(1,nat),next ; (id(1) + succ)] .The successor can not be de�ned corecursively. The problem is, that a function q : N ! 1 + N to makethis diagram commuteN succq Nnext1 + N id1+succ 1 + Nwould have to send 0 to some x 2 N such that succ(x) = 0. There are no such elements and thereforethere is no such function q.We can, however, de�ne the successor by composition: succ = inc2(1;N) ; next�1. The inverse of nextcan be de�ned corecursively as corec(id1+next). It will be denoted nextinv. Functions corec(id1+next)and next�1 are indeed equal, since next�1 makes the corresponding �nality diagram commute and therecan only be one such function.To prove pred(succ(x)) = x we now try to prove that pred ; succ is a endomorphism on the �nal coalgebraand thus equal to idN.Maude> reduce succ ; pred ; next == next ; natfunc(succ ; pred) .which is false. Inspecting the normal forms byreduce succ ; pred ; next .rewrites: 758result Arrow: next ; [inc1(1, nat),next ; nextinv ; inc2(1, nat) ; nextinv ;pred ; inc2(1, nat)]reduce next ; natfunc(succ ; pred) .rewrites: 227result Arrow: next ; [inc1(1, nat),inc2(1, nat) ; nextinv ; pred ; inc2(1,nat)]reveals that they di�er only in a \next ; nextinv" occuring in the �rst normal form that does notappear in the second. This can be dropped since next ; next�1 is a homomorphism on the �nal coalgebraand thus equal to idN.That can be shown by reducingnext ; nextinv ; next == next ; natfunc(next ; nextinv) .to true. We can now addeq next ; nextinv = id(nat) .as a lemma to our rewrite system to prove the original equation automatically.The constant 0 can easily be de�ned corecursively as1 zeroinc1 Nnext1 + 1 id1+zero 1 + N 25

Virtue of the coalgebraic (as opposed to the algebraic) de�nition of the naturals is the ease in de�ningbinary functions. While one has to resort to function types and currying to inductively de�ne addition ofnaturals, de�ning it coinductively is straightforward. We just have to come up with a function addstructsuch that commutativity of the following diagram forces add to be addition:N � N addaddstruct Nnext1 + N � N id1+add 1 + NThus, addstruct should be de�ned as(n; n0) 7! 8><>:� n = n0 = 0(n; n0 � 1) n = 0 n0 > 0(n0; n� 1) n > 0This is now represented using categorical combinators. To acquire information about a natural number(i.e. to know whether it is 0 or not) next is applied. \Destructor" seems quite an apt name for it, which iswhy the �rst argument is copied before applying next . The distributivity isomorphism is put in explicitly,the \�1" is now implicit in the next . The case analysis is now structured into two nested copairings.Note that,1. there is a reason I chose (n0; n � 1) in the last case instead of (n � 1; n0) which would have beencorrect, too. Opting for the second, I would have had to insert the commutativity isomorphism (<proj2(nat, nat), proj1(nat, nat) >) before the last inclusion in the de�nition below, and2. that I use strict associativity: the second argument of the outer copairing should have domain(N � N)� N but the domain of proj2(nat, nat x nat) is N � (N � N)eq addstruct =< id(nat x nat), proj1(nat, nat) ; next > ;dist(nat x nat, 1, nat) ;[proj1(nat x nat, 1) ;(id(nat) x next) ;dist(nat,1,nat) ;[proj2(nat,1) ;inc1(1, nat x nat),inc2(1, nat x nat)],proj2(nat, nat x nat) ;inc2(1, nat x nat)] .The only statement about add that I was able to prove automatically with Maude was< zero ; zero > ; add = zero(again by manually applying the uniqueness principle). I did not spend much time on more useful prop-erties, such as commutativity. Proving automatically that this corecursive add does indeed correspondto our notion of addition of naturals, i.e. thatadd (zero; x) = x ^ add (succ(x); y) = succ(add (x; y))26

did not succeed by just applying uniqueness and then automatically rewriting. This is of course justa problem of which tool to choose for reasoning in those theories. The propositions are true, theyare proven (using bisimulation) in [R96]. Surely replacing Maudes rewrite engine by some interactiveequational theorem prover would help.5.3 SequencesThe union of the set of streams and the set of (�nite) lists over some �xed set A is called the set ofsequences over A and denoted A1. Together with a function next : A1 ! 1 + A � A1 it is the �nalcoalgebra of the functor T (X) = 1 + A � X . Intuitively, a coalgebra of this functor is a deterministicautomaton or a process and its coalgebra structure the transition to the next state. There is no input andthe output alphabet of the automaton is A. Given some state of the automaton, applying next either yieldsan element of A together with the next state or it yields �, meaning that now the automaton has reacheda �nal state and terminated. In the �nal coalgebra all states that are bisimilar, i.e. not distinguishableusing next , are identi�ed. Its elements thus correspond to the behaviours that the states of an automatonexhibit. And those behaviours correspond to sequences over A. Seen in this light, streams are behavioursof deterministic automata that cannot terminate, i.e. where each state has exactly one transition to anext state.We now de�ne the empty sequence nil : 1! A1, the sequence constructor cons : A�A1 ! A1, the tailtail : A1 ! A1 and concatenation conc : A1 � A1 ! A1 on sequences, by exhibiting the appropriatecoalgebra structures:eq nilstruct = inc1(1, setA x 1) .eq nextinvstruct = id(1) + (id(setA) x next) .eq cons = inc2(1, setA x seq) ; nextinv .eq tailstruct = next ; [inc1(1, setA x seq) ,proj2(setA, seq) ; next ;(id(1) + < proj1(setA, seq) , cons >)] .eq concstruct = < id(seq x seq) ,proj1(seq, seq) ; next> ;dist(seq x seq, 1, setA x seq) ;[proj1(seq x seq, 1) ;(id(seq) x next) ;dist(seq, 1, setA x seq);[proj2(seq, 1) ;inc1(1, setA x seq x seq),< proj2(seq, setA x seq) ,proj1(seq, setA x seq) > ;inc2(1, setA x seq x seq)], 27

(proj2(seq, seq) x id(setA x seq)) ;< proj2(seq, setA x seq) ,proj1(seq, setA x seq) > ;inc2(1, setA x seq x seq)] .Since the completed naturals can be seen as a special case of sequences where A = 1, the functionsde�ned above are generalizing zero, succ, pred and add , respectively, and so are their de�ning coalgebrastructures. The only di�erence lies in concstruct : the commutativity isomorphism is used twice, but doesnot occur in addstruct . As noted before, we could introduce it in addstruct as well, it would not make adi�erence since add is commutative. But conc is not, therefore the isomorphism in concstruct is crucial.Proving cons ; tail = proj 2 now is a bit more complex than proving pred ; succ = idN. To prove thesecond equation coinductively, coming up with the appropriate de�ning coalgebra structure is immediate,because idN is a coalgebra homomorphism on the �nal coalgebra. But of course proj 2 is not. Here wehave to �nd a function projstruct that makes the following diagram commute:A�A1 proj2projstruct A1next1 +A�A�A1 id1+idA�proj 2 1 +A�A1That is easy in this case since all that has to be done is applying next and making sure that the resultappears in the appropriate places in the ternary product. The following de�nition does the job.eq projstruct = proj2(setA, seq) ; next ;(id(1)+< proj1(setA, seq) , id(setA x seq) >) .We can check whether this coalgebra structure does indeed de�ne proj 2 by executingMaude> reduce proj2(setA, seq) ; next == projstruct ; seqfunc(proj2(setA, seq)) .where seqfunc is the functor for sequences T (X) = 1 +A�X . The equation reduces to true.Knowing that, we can prove cons ; tail equal to proj 2 by showing that it too makes the above diagramcommute.Maude> reduce cons ; tail ; next == projstruct ; seqfunc(cons ; tail) .also yields true.Not surprisingly, < nil ; nil > ; conc = nil can also be proven.Streams over A are a subset of the sequences over A. The corresponding inclusion can be de�nedcorecursively: AN incstr<head;tail> A1nextA�ANinc21 +A�AN id1+idA�incstr 1 +A�A1 28

Now we want to prove that conc(x; y) is not distinguishable from x if x is an in�nite sequence (i.e. astream). We thus prove that in the �nal coalgebra the two are equal. Rephrasing this in element-freelanguage yields incstr � idA1 ; conc = proj 1(AN; A1) ; incstr .Here again we have to come up with the appropriate coalgebra structure that allows to show equality byuniqueness. We �nd thateq projincstrstruct = (< head,tail > x id(seq)) ;inc2(1,setA x streams x seq) .does the job since we can prove commutativity of the following diagram by reduction:AN �A1 proj 1 ; incstr<head;tail>�idA1 A1nextA�AN � A1inc21 +A�AN �A1 id1 + idA � (proj 1 ; incstr) 1 +A�A1Since replacing proj 1(AN; A1) ; incstr by incstr � idA1 ; conc also makes the above diagram commute,which also can be proven by reduction, we conclude by uniqueness that they are equal.6 Coinduction StrategiesStrategies are procedures that inspect a proposition that has to be proved and determine what stepsshould be taken to prove it. In our categorical framework the diÆcult, creative part in a coinductiveproof of h1 = h2 with h1; h2 : S ! F , F being the �nal coalgebra, is coming up with the appropriatecoalgebra structure q : S ! T (S) that turns both h1 and h2 into coalgebra homomorphisms. An essentialbuilding block for coinduction strategies would thus be a function, sayop codef : Arrow -> Arrow? .that, given some morphism h, yields a coinductive de�nition of h, that is, some q such that h = corec(q).Such a codef could only be de�ned on morphisms into the �nal coalgebra, but would necessarily be partialeven on those since not all such morphisms are coinductively de�neable, see e.g. succ. It would also haveto make some choice since two di�erent q1; q2 : S ! T (S) might coinductively de�ne the same function,see e.g. add .A strategy that has to prove h1 = h2 could check whether codef is de�ned on one side of the equation,and if it is, say on h1, return the resulting proof obligation:h2 ; next = codef (h1) ; T (h2)Since most proofs in section 5 involved proving equal a function to either the identity or to some core-cursively de�ned function, I already used the de�nition of codef ascodef (id(F)) = nextcodef (corec(q)) = q:On isomorphisms, the de�nition of codef is straightforward, too. That is useful, remember that thestructures of �nal coalgebras are isomorphisms. For a copairing of two coinductively de�ned morphisms,its coinductive de�nition can be constructed from the coinductive de�nitions of its arguments.On other types of morphisms codef can be de�ned for a speci�c endofunctor. That happened for functorT (X) = 1 +A�X and morphism proj 2 (see page 28).29

The following table gives a { still rather incomplete { picture of what such a function codef shouldlook like. (F;next) denotes the �nal coalgebra, h is some morphism with cod (h) = F and i and j areisomorphisms.h codef (h)idF nextcorec(q) qi i ; next ; T (i�1)j ; q j ; codef (q) ; T (j�1)[q1; q2] [codef (q1) ; T (inc1(A;B));codef (q2) ; T (inc2(A;B))]7 ConclusionsAn approach to coinductive theorem proving has been proposed that is based on the �nality of coalgebrasexpressed in terms of equalities of morphisms in a category with structure. Such categories have beenspeci�ed in membership equational logic, which seems the natural candidate for that purpose becauseit supports convenient treatment of partiality. Then the Maude system has been used to prove somestatements about streams, natural numbers and sequences.This approach allows to prove some inductive and coinductive properties entirely by equational reasoningbecause universally quanti�ed �rst order propositions translate into ground equations of morphisms.However, complexity does not just vanish. Coinductive function de�nitions have to be given in categoricalcombinator language, i.e. by composing projections, inclusions, pairings, copairings etc. Certainly thede�nition of addstruct using elements (page 26) is easier to understand than its transliteration intocombinator language. When de�ning a binary function by case analysis, nobody wants to worry aboutwhere to insert the distributivity isomorphisms. It has to be seen how this language can be made moreintuitive. Also, just because inductive and coinductive proofs can be reduced to equational proofs, thatby itself does not mean that they become simpler. Their complexity depends on two things:1. The structure of the underlying category. In the case of streams, this structure consists of theproduct only. Since the equality of morphisms in such a categories can be decided by e.g. moduleCARTESIAN, proofs are easy to the extent that they can be done automatically by Maude. Sequences,in contrast, live in a category with product and sum and distributivity of the �rst over the second.Equality of morphisms in such categories is widely thought to be decidable, but to my knowledge,there is no proof of that.2. The diÆculty of �nding the right coalgebra structure for applying the coinduction principle. For allpropositions proved in section 5 this structure was found in a straightforward fashion, that couldbe mechanized as outlined in section 6. That is not true in general, consider for exampleadd (succ(x); y) = succ(add (x; y)):Coinductive proofs have not fully been mechanized inside Maude, because the coinduction principle isjust the inference rule that has not been mechanized. Actually, the user decides to apply coinduction on aproposition, comes up with the coalgebra structure, determines the resulting proof obligations, uses Maudeto prove them and then concludes that the original proposition must be true. This is necessitated by thefact that Maude is a rewrite engine, not a theorem prover. In a full-edged MEL theorem prover, thecoinduction principle can be mechanized as outlined in section 5. Of course Maude/Rewriting Logic couldbe used to implement an inductive MEL theorem prover as demonstrated in [CDEM99], or the existingtheorem prover could be extended. The prover there \as is" is not suited for reasoning in structuredcategories, because it can prove equations only by rewriting and does not support interactive applicationof equations. Basing an interactive MEL theorem prover on Maude has the obvious advantages of30

1. a straightforward representation of the inference rules as conditional rewrite rules and2. inheriting Maude's fast rewriting and matching-modulo algorithms.But even so, it still is a new implementation of an interactive theorem prover and since my interest isnot in writing yet another theorem prover, but in ways to prove coinductive properties equationally, thatshould be the last option if none of the existing ones can be adapted to suit this task.Future Work The foremost task is to �nd the right ground on which to base tool support for reasoningin structured categories. While Maude has its merits, \o�-the-shelf" provers like Coq, Isabelle and PVSshould be considered. Another question is what other properties besides strict associativity should berequired of the structured category in which is reasoned. An interesting candidate is strict distributivity.What is its interpretation in Set? Does it simplify de�nitions and proofs? To aid mechanization, adecision procedure for equality of morphisms in the free distributive category generated by a graph wouldbe helpful. Finally, the coinduction strategies outlined in section 6 should be elaborated and extended alot.Acknowledgements I would like to thank my supervisor Prof. Horst Reichel for having provided aninteresting problem and numerous advice on how to solve it. I am also very thankful to Jos�e Meseguer forhis encouragement and for making possible my half-year stay at SRI during which most of this work wasdone. For his interest in my work and his helpful comments, I would like to thank Mark-Oliver Stehr.Christiano Braga gladly answered my questions about Maude. Hendrik Tews and Dmitri Schamschurkoread preliminary versions of this work and prompted improvements.

31

References[BW99] Michael Barr and Charles Wells. Category Theory for Computing Science. 3rd Ed. LesPublications CRM, Montr�eal 1999.[JR97] Bart Jacobs and Jan Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bulletin ofthe EATCS,(62):222-259, June 1997.[R96] J.J.M.M. Rutten. Universal Coalgebra: a theory of systems. CWI Report CS-R9652, 1996.[M98] Jos�e Meseguer. Membership Algebra as a semantic framework for equational speci�cation.In F. Parisi-Presicce, ed., Proc. WADT'97,18-61, Springer LNCS 1376, 1998.[Maude99] Manuel Clavel, Francisco Dur�an, Steven Eker, Patrick Lincoln, Narciso Mart�i-Oliet, Jos�eMeseguer, and Jos�e Quesada. Maude: Speci�cation and Programming in Rewriting Logic.Manuscript, Computer Science Laboratory SRI International, March 8, 1999.[CDEM99] Manuel Clavel, Francisco Dur�an, Steven Eker, Jos�e Meseguer. Building equational provingtools by reection in rewriting logic. In Proc. of the CafeOBJ Symposium '98, Numazu,Japan. CafeOBJ Project, April 1998.[CS00] J.R.B. Cockett and R.A.G. Seely. Finite sum-product logic. Manuscript, April 2000. To bepublished.[P97] L.C. Paulson. Mechanizing coinduction and corecursion in higher order logic. Journ. ofLogic and Computation, 7:175-204, 1997.[HJ97] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. TechnicalReport CSI-R9703, Computing Science Institute, University of Nijmegen, 1997.[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, pages 243-320. Elsevier, 1990.

32

A Statement of Academical Honesty(Selbst�andigkeitserkl�arung)
Hiermit erkl�are ich, da� ich die vorliegende Arbeit selbst angefertigt und keine anderen als die angegebenenQuellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht habe.
Dresden, den 20. Mai 2000
Kai Br�unnler

33

B Maude Functional ModulesList of Modules1 CATEGORY . 62 CARTESIAN . 353 PRODUCT . 364 PRODUCT-ASSOC . 375 TERMINAL . 386 SUM . 397 DISTRIBUTIVE . 408 BOOLEAN . 419 PARAMETER . 4110 STREAM-FUNCTOR . 4211 NATURALS-FUNCTOR . 4212 SEQUENCE-FUNCTOR . 4313 STREAMS . 4314 NATURALS . 4415 ADD . 4516 SEQUENCES . 4617 CONCATENATE . 4718 INCSTR . 47

34

fmod CARTESIAN issorts Object Arrow .op id : Object -> Arrow .op _;_ : Arrow Arrow -> Arrow .op _x_ : Object Object -> Object .ops proj1 proj2 : Object Object -> Arrow .op <_,_> : Arrow Arrow -> Arrow .op 1 : -> Object .op ! : Object -> Arrow .vars F G H : Arrow .vars A B : Object .eq dom(proj1(A,B)) = A x B .eq dom(proj2(A,B)) = A x B .eq cod(proj1(A,B)) = A .eq cod(proj2(A,B)) = B .eq dom(< F,G >) = dom(F) .eq cod(< F,G >) = cod(F) x cod(G) .eq dom(!(A)) = A .eq cod(!(A)) = 1 .eq F ; (G ; H) = (F ; G) ; H .eq id(A) ; F = F .eq F ; id(A) = F .eq < F,G > ; proj1(A,B) = F .eq < F,G > ; proj2(A,B) = G .eq < F ; proj1(A,B), F ; proj2(A,B) > = F .eq F ; < G,H > = < F ; G, F ; H > .eq < proj1(A,B), proj2(A,B) > = id(A x B) .eq proj1(1,A) = !(1 x A) .eq proj2(A,1) = !(A x 1) .eq !(1) = id(1) .eq F ; !(A) = !(dom(F)) .eq < !(B), F ; proj2(1,A) > = F .eq < F ; proj1(A,1), !(B) > = F .eq < !(1 x A), proj2(1,A) > = id(1 x A) .eq < proj1(A,1), !(A x 1) > = id(A x 1) .eq < id(1), F ; proj2(1,A) > = F .eq < F ; proj1(A,1), id(1) > = F .endfm Module 2: Decision Procedure for the Word Problem in a Cartesian Category
35

fmod PRODUCT isincluding CATEGORY .op _x_ : Object Object -> Object .op _x_ : Arrow Arrow -> Arrow .ops proj1 proj2 : Object Object -> Arrow .op <_,_> : Arrow Arrow -> Arrow? .vars F G H : Arrow .vars A B : Object .eq dom(proj1(A,B)) = A x B .eq dom(proj2(A,B)) = A x B .eq cod(proj1(A,B)) = A .eq cod(proj2(A,B)) = B .eq dom(< F,G >) = dom(F) .eq cod(< F,G >) = cod(F) x cod(G) .--- express product as pairingeq F x G = < proj1(dom(F), dom(G)) ; F ,proj2(dom(F), dom(G)) ; G > .--- pairing is defined for arrows w/ the same domain onlycmb < F,G > : Arrow if dom(F) == dom(G) .--- existence of pairingceq < F,G > ; proj1(A,B) = F if dom(F) == dom(G) andcod(F) == A andcod(G) == B .ceq < F,G > ; proj2(A,B) = G if dom(F) == dom(G) andcod(F) == A andcod(G) == B .--- uniqueness of pairingceq < F ; proj1(A,B), F ; proj2(A,B) > = F if cod(F) == A x B .--- and this has to be added to make it confluentceq F ; < G,H > = < F ; G, F ; H > if dom(G) == dom(H) anddom(G) == cod(F) .eq < proj1(A,B), proj2(A,B) > = id(A x B) .endfm Module 3: Binary Products36

fmod PRODUCT-ASSOC isincluding CATEGORY .op _x_ : Object Object -> Object [assoc] .op _x_ : Arrow Arrow -> Arrow .ops proj1 proj2 : Object Object -> Arrow .op <_,_> : Arrow Arrow -> Arrow? [assoc] .vars F G H : Arrow .vars A B C : Object(same statements as in PRODUCT)...--- strict associativityeq proj1(A x B, C) ; proj1(A,B) = proj1(A, B x C) .eq proj2(A, B x C) ; proj2(B,C) = proj2(A x B, C) .eq < proj1(A x B, C) ; proj2(A,B), proj2(A x B, C) > = proj2(A, B x C) .eq < proj1(A, B x C), proj2(A, B x C) ; proj1(B,C) > = proj1(A x B, C) .ceq < F,G > ; proj1(A, B x C) = F ; proj1(A,B)if dom(F) == dom(G) andcod(F) == A x B andcod(G) == C .ceq < F,G > ; proj2(A x B, C) = G ; proj2(B,C)if dom(F) == dom(G) andcod(F) == A andcod(G) == B x C .endfm Module 4: Strictly Associative Product
37

fmod TERMINAL isincluding CATEGORY .including PRODUCT-ASSOC .op 1 : -> Object .op ! : Object -> Arrow .var A B : Object .var F : Arrow .eq dom(!(A)) = A .eq cod(!(A)) = 1 .eq proj1(1,A) = !(1 x A) .eq proj2(A,1) = !(A x 1) .eq !(1) = id(1) .ceq F ; !(A) = !(dom(F)) if cod(F) == A .ceq < !(B), F ; proj2(1,A) > = F if cod(F) == 1 x A anddom(F) == B .ceq < F ; proj1(A,1), !(B) > = F if cod(F) == A x 1 anddom(F) == B .eq < !(1 x A), proj2(1,A) > = id(1 x A) .eq < proj1(A,1), !(A x 1) > = id(A x 1) .ceq < id(1), F ; proj2(1,A) > = F if cod(F) == 1 x A anddom(F) == 1 .ceq < F ; proj1(A,1), id(1) > = F if cod(F) == A x 1 anddom(F) == 1 .endfm Module 5: Terminal Object
38

fmod SUM isincluding CATEGORY .op _+_ : Object Object -> Object .op _+_ : Arrow Arrow -> Arrow .ops inc1 inc2 : Object Object -> Arrow .op [_,_] : Arrow Arrow -> Arrow? .vars F G H : Arrow .vars A B : Object .eq cod(inc1(A,B)) = A + B .eq cod(inc2(A,B)) = A + B .eq dom(inc1(A,B)) = A .eq dom(inc2(A,B)) = B .eq dom([F,G]) = dom(F) + dom(G) .eq cod([F,G]) = cod(F) .--- express sum as copairingeq F + G = [F ; inc1(cod(F), cod(G)),G ; inc2(cod(F), cod(G))] .--- copairing is defined for arrows w/ the same codomain onlycmb [F,G] : Arrow if cod(F) == cod(G) .--- existence of copairingceq inc1(A,B) ; [F,G] = F if cod(F) == cod(G) anddom(F) == A anddom(G) == B .ceq inc2(A,B) ; [F,G] = G if cod(F) == cod(G) anddom(F) == A anddom(G) == B .--- uniqueness of copairingceq [inc1(A,B) ; F, inc2(A,B) ; F] = F if dom(F) == A + B .--- and this has to be added to make it confluentceq [F,G] ; H = [F ; H, G ; H] if cod(F) == cod(G) andcod(F) == dom(H) .eq [inc1(A,B), inc2(A,B)] = id(A + B) .endfm Module 6: Binary Sums39

fmod DISTRIBUTIVE isincluding CATEGORY .including PRODUCT-ASSOC .including SUM .op dist : Object Object Object -> Arrow .vars A B C D : Object .vars F G : Arrow .eq dom(dist(A,B,C)) = A x (B + C) .eq cod(dist(A,B,C)) = (A x B) + (A x C) .eq dist(A,B,C) ;[< proj1(A,B), proj2(A,B) ; inc1(B,C) > ,< proj1(A,C), proj2(A,C) ; inc2(B,C) >] = id(A x (B + C)) .eq < proj1(A,B), proj2(A,B) ; inc1(B,C) > ; dist(A,B,C)= inc1(A x B, A x C) .eq < proj1(A,C), proj2(A,C) ; inc2(B,C) > ; dist(A,B,C)= inc2(A x B, A x C) .ceq < F, G ; inc1(B,C) > ; dist(A,B,C)= < F,G > ; inc1(A x B, A x C)if dom(F) == dom(G) and cod(F) == A and cod(G) == B .ceq < F, G ; inc2(B,C) > ; dist(A,B,C)= < F,G > ; inc2(A x B, A x C)if dom(F) == dom(G) and cod(F) == A and cod(G) == C .ceq < F, inc1(B,C) > ; dist(A,B,C)= < F,id(B) > ; inc1(A x B, A x C)if dom(F) == B and cod(F) == A .ceq < F, inc2(B,C) > ; dist(A,B,C)= < F,id(C) > ; inc2(A x B, A x C)if dom(F) == B and cod(F) == A .ceq < proj1(A, B + C) ; F, proj2(A, B + C) > ; dist(D,B,C)= dist(A,B,C) ; ((F x id(B)) + (F x id(C)))if dom(F) == A and cod(F) == D .ceq < F,G > ; dist(A,B,C)= < id(dom(F)), G > ; dist(dom(F),B,C) ;((F x id(B)) + (F x id(C)))if dom(F) == dom(G) and cod(F) == A andcod(G) == B + C and not isId(F) .op isId : Arrow -> Bool .eq isId(id(A)) = true .endfm Module 7: Distributivity40

fmod BOOLEAN isincluding CATEGORY .including SUM .including PRODUCT-ASSOC .including TERMINAL .including DISTRIBUTIVE .op bool : -> Object .ops f t : -> Arrow .ops not and : -> Arrow .eq bool = 1 + 1 .eq f = inc1(1,1) .eq t = inc2(1,1) .eq not = [inc2(1,1), inc1(1,1)] .eq and = dist(bool,1,1) ;(proj1(bool,1) + proj1(bool,1)) ;[[f,f],id(bool)] .endfm Module 8: Booleans
fmod PARAMETER isincluding CATEGORY .op setA : -> Object .endfm Module 9: Parameter Object

41

fmod STREAM-FUNCTOR isincluding PRODUCT-ASSOC .including PARAMETER .var A : Object .var F : Arrow .op strfunc : Object -> Object .op strfunc : Arrow -> Arrow .eq strfunc(F) = id(setA) x F .eq strfunc(A) = setA x A .endfm Module 10: Functor T (X) = A�X
fmod NATURALS-FUNCTOR isincluding SUM .including TERMINAL .op natfunc : Object -> Object .op natfunc : Arrow -> Arrow .var A : Object .var F : Arrow .eq natfunc(F) = id(1) + F .eq natfunc(A) = 1 + A .endfm Module 11: Functor T (X) = 1 +X

42

fmod SEQUENCE-FUNCTOR isincluding PRODUCT-ASSOC .including SUM .including TERMINAL .including PARAMETER .var S : Object .var F : Arrow .op seqfunc : Object -> Object .op seqfunc : Arrow -> Arrow .eq seqfunc(F) = id(1) + (id(setA) x F) .eq seqfunc(S) = 1 + (setA x S) .endfm Module 12: Functor T (X) = 1 +A�Xfmod STREAMS isincluding STREAM-FUNCTOR .ops head tail : -> Arrow .ops merge odd even : -> Arrow .op streams : -> Object .eq dom(head) = streams .eq cod(head) = setA .eq dom(tail) = streams .eq cod(tail) = streams .eq dom(merge) = streams x streams .eq cod(merge) = streams .eq dom(odd) = streams .eq cod(odd) = streams .eq dom(even) = streams .eq cod(even) = streams .eq merge ; head = proj1(streams, streams) ; head .eq merge ; tail = < proj2(streams, streams) ,proj1(streams, streams) ; tail > ; merge .eq odd ; head = head .eq odd ; tail = tail ; tail ; odd .eq even = tail ; odd .endfm Module 13: Streams43

fmod NATURALS isincluding DISTRIBUTIVE .including NATURALS-FUNCTOR .op next : -> Arrow .op nat : -> Object .eq dom(next) = nat .eq cod(next) = natfunc(nat) .ops nextinv succ : -> Arrow .eq dom(nextinv) = natfunc(nat) .eq cod(nextinv) = nat .eq nextinv ; next = natfunc(next) ; natfunc(nextinv) .eq succ = inc2(1,nat) ; nextinv .ops pred predstruct : -> Arrow .eq dom(pred) = nat .eq cod(pred) = nat .eq predstruct = next ; [inc1(1,nat),next ; (id(1) + succ)] .eq pred ; next = predstruct ; natfunc(pred) .ops zero zerostruct : -> Arrow .eq zerostruct = inc1(1,1) .eq dom(zero) = 1 .eq cod(zero) = nat .eq zero ; next = zerostruct ; natfunc(zero) .endfm Module 14: Completed Natural Numbers
44

fmod ADD isincluding NATURALS .ops addstruct add : -> Arrow .eq dom(addstruct) = nat x nat .eq cod(addstruct) = 1 + (nat x nat) .eq dom(add) = nat x nat .eq cod(add) = nat .eq add ; next = addstruct ; natfunc(add) .eq addstruct =< id(nat x nat), proj1(nat, nat) ; next > ;dist(nat x nat, 1, nat) ;[proj1(nat x nat, 1) ;(id(nat) x next) ;dist(nat,1,nat) ;[proj2(nat,1) ;inc1(1, nat x nat),inc2(1, nat x nat)],proj2(nat, nat x nat) ;inc2(1, nat x nat)] .endfm Module 15: Addition of Completed Natural Numbers

45

fmod SEQUENCES isincluding SEQUENCE-FUNCTOR .including DISTRIBUTIVE .op next : -> Arrow .op seq : -> Object .ops nextinv stail cons : -> Arrow .ops proj2struct stailstruct : -> Arrow .eq dom(next) = seq .eq cod(next) = seqfunc(seq) .eq dom(nextinv) = seqfunc(seq) .eq cod(nextinv) = seq .eq dom(stail) = seq .eq cod(stail) = seq .eq dom(cons) = setA x seq .eq cod(cons) = seq .eq nextinv ; next = seqfunc(next) ; seqfunc(nextinv) .eq cons = inc2(1, setA x seq) ; nextinv .eq stail ; next = stailstruct ; seqfunc(stail) .eq stailstruct = next ; [inc1(1, setA x seq) ,proj2(setA, seq) ; next ;(id(1) + < proj1(setA, seq) , cons >)] .eq proj2struct = proj2(setA, seq) ; next ;[inc1(1, setA x setA x seq) ,< proj1(setA, seq) , id(setA x seq) > ;inc2(1, setA x (setA x seq))] .eq next ; nextinv = id(seq) .ops nil nilstruct : -> Arrow .eq dom(nil) = 1 .eq cod(nil) = seq .eq nilstruct = inc1(1, setA x 1) .eq nil ; next = nilstruct ; seqfunc(nil) .endfm Module 16: Sequences
46

fmod CONCATENATE isincluding SEQUENCES .ops conc concstruct : -> Arrow .eq dom(conc) = seq x seq .eq cod(conc) = seq .eq concstruct = < id(seq x seq) ,proj1(seq, seq) ; next> ;dist(seq x seq, 1, setA x seq) ;[proj1(seq x seq, 1) ;(id(seq) x next) ;dist(seq, 1, setA x seq);[proj2(seq, 1) ;inc1(1, setA x (seq x seq)),< proj2(seq, (setA x seq)) ,proj1(seq, (setA x seq)) > ;inc2(1, setA x seq x seq)],(proj2(seq, seq) x id(setA x seq)) ;< proj2(seq, setA x seq) ,proj1(seq, setA x seq) > ;inc2(1, setA x seq x seq)] .eq conc ; next = concstruct ; seqfunc(conc) .endfm Module 17: Concatenation of Sequencesfmod INCSTR isincluding SEQUENCES .including STREAMS .op incstr : -> Arrow .eq dom(incstr) = streams .eq cod(incstr) = seq .eq incstr ; next = < head, tail > ; inc2(1,setA x streams) ;seqfunc(incstr) .endfm Module 18: Inclusion of Streams into Sequences47

