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1 Introduction

We call finitely generating an inference rule in a sequent system [7] if, given
its conclusion, there is only a finite set of premises to choose from. This
property is desirable from the viewpoint of proof search, since it implies
that the search tree is finitely branching. It is also desirable for showing
consistency, since the biggest obstacle to showing consistency is the cut rule,
which is not finitely generating.

Much effort has been devoted to eliminating the cut rule in various sys-
tems: theorems of cut elimination are at the core of proof theory. In addi-
tion to the cut, there is another source of infinite choice in the bottom-up
construction of a first order proof, namely the choice in instantiating an exis-
tentially quantified variable. Research grounded in Herbrand’s theorem [11]
deals with this aspect and is at the core of automated deduction and logic
programming.
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Implementations of sequent systems for first order predicate logic are
usually based on rules that are finitely generating. Such rules can be obtained
for example as follows: first prove cut elimination to get rid of the cut rule,
then use unification instead of blindly guessing instantiations.

This paper shows how one can eliminate all sources of infinite choice in
a system of first order classical logic in a much simpler way, in particular
without the use of cut elimination. To do so we use the calculus of structures
[9], a formalism based on deep inference, which is the possibility of applying
inference rules deep inside formulae. Systems in the calculus of structures
offer the same proof theoretical properties as systems in the sequent calculus,
in particular it is possible to prove cut elimination and many other normal-
isation results [9, 3, 1, 2]. The point here is that it is possible to obtain
finitely generating systems without having to use these complex methods.

The main idea we exploit is that there are actually two sources of infinite
choice in the cut rule: an infinite choice of atoms and an infinite choice in how
these atoms can be combined for making formulae. Deep inference allows us
to separate these two kinds of infinite choice. First we reduce the cut rule to
atomic form, which is immediate thanks to deep inference. Then we eliminate
only those cuts which (seen bottom-up) introduce atoms that do not occur
in the conclusion. This is much simpler than a full-blown cut elimination.
The instances of cut that we retain introduce atoms that already occur in
the conclusion, so they are finitely generating.

Just like the cut rule, the rule for existential quantification also has two
sources of infinite choice: an infinite choice of function symbols and an infinite
choice in how these function symbols can be combined for making terms.
We eliminate them by using the same technique that we used for the cut:
first we reduce the instantiation rule to a form which instantiates only with
one function symbol at a time. Then we eliminate those instances which
introduce function symbols that do not occur in the conclusion. We are left
with a finitely generating instantiation rule.

In the sequent calculus, which restricts the application of inference rules
to the main connective of a formula, it is impossible to eliminate infinite
choice in such a simple manner. First, the cut rule can not immediately be
reduced to atomic form: one has to use cut elimination for that. Second, the
rule for instantiating existentially quantified variables can not be restricted to
instantiating with only one function symbol. The adoption of deep inference
instead allows this.

When proving in the system we obtain, the only infinity that remains is
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in the unboundedness of the proofs themselves, every other aspect in proof
construction is finite: at any given step, there are finitely many inferences
possible, and each inference rule can only be applied in a finite number of
different ways. Also, the consistency of the system is easily shown.

The point we make in this paper is not so much the existence of the
finitely generating system that we show, but the simplicity of the techniques
that are used to obtain it, which are purely syntactic and much less complex
than cut elimination.

The notion of a finitely generating inference rule is closely related to that
of an analytic rule, cf. Smullyan [12]. An analytic rule is one that obeys the
subformula property. We tend to think of the notion of being finitely gener-
ating as a more general, weaker subformula property: there are interesting
rules that are finitely generating but do not obey the subformula property,
for example in system GS4ip, cf. Dyckhoff [6]. However, not all analytic rules
are finitely generating, as witnessed by the existential-right rule. This is due
to the fact that analyticity is defined with respect to the notion of Gentzen
subformula (where instances of subformulae count as subformulae), rather
than the literal notion of subformula.

In previous work, Briinnler and Tiu proved that classical logic can be
presented in the calculus of structures in such a way that applying a rule
only requires a bounded effort [1, 3]. This paper improves on that result by
bounding choice.

In Section 2 we introduce first order logic in the calculus of structures
and in Section 3 we show how to eliminate infinitely generating rules and we
show the consistency argument.

2 First Order Logic in the Calculus of Structures

Variables are denoted by x and y. Terms, denoted by 7, are defined as usual
in first-order predicate logic. Atoms, denoted by a, b, etc., are expressions of
the form p(7,...,7,), where p is a predicate symbol of arity n and 7y, ..., 7,
are terms. The negation of an atom is again an atom.

The structures of the language KSq are generated by

Su=flt]|all[S,...,S]](S,...,8)]| IS |VaS | S
>0 >0

where t and f are the units true and false, [Si,...,Sh] is a disjunction,
(S1,...,5h) is a conjunction, 3 is the ezistential quantifier and V is the
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Associativity Commutativity
(R, [T),U] = [R,T,U] [R,T] = [T, R]
(R, (T),U) = (R, T,0) (R, T)=(T\R)
Units Negation
ttj=t (LR)=R t=f
[R,T] = (R T)
Context Closure (R,T) = [R,T]
| S{R} = S{T} St = el
if R=T then BT ViR — JR
R=R

Vacuous Quantifier
if y is not free in R then VyR =dyR= R
Variable Renaming

VR =VyR|[z/y]

if y is not free in R then
JzR = JyR[z/y]

Figure 1.1: Syntactic equivalence of structures

universal quantifier. S is the negation of the structure S. The units are
not atoms. Structures are denoted by S, R, T', U and V. Structure contexts,
denoted by S{ }, are structures with one occurrence of { }, the empty context
or hole, that does not appear in the scope of a negation. S{R} denotes the
structure obtained by filling the hole in S{ } with R. We drop the curly
braces when they are redundant: for example, S[R, T stands for S{[R,T]}.
Structures are equivalent modulo the smallest equivalence relation induced by
the axioms shown in Fig. 1.1, where Rand T are finite, non-empty sequences
of structures. In general we do not distinguish between equivalent structures.
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An inference rule is a scheme of the kind p , where p is the name of

S{R}

the rule, S{T'} is its premise and S{R} is its conclusion. A (formal) system

7 is a set of inference rules. The dual of a rule is obtained by exchanging

premise and conclusion and replacing each connective by its De Morgan dual.
A deriwation A is a finite chain of instances of inference rules:

T
/7"' JE—
Vv

mw —

-

P

"R
A derivation can consist of just one structure. The topmost structure in a
derivation is called the premise of the derivation, and the structure at the
bottom is called its conclusion. A derivation A whose premise is T', whose
conclusion is R, and whose inference rules are in .7 will be indicated with

T
Al . A proof 1l in the calculus of structures is a derivation whose premise

R
is the unit true. It will be denoted by Hy;. A rule p is derivable for a

T
system .7 if for every instance of p 7 there is a derivation [ . A rule pis

R

admissible for a system .7 if for every proof —‘;VU{;}} there is a proof |54 .

S

Besides deep inference, the calculus of structures employs a notion of
top-down symmetry for derivations. Symmetry makes possible to reduce the
cut rule to its atomic form without performing cut elimination: this would
be impossible by solely adopting deep inference. The dual of a derivation
is obtained by flipping it upside-down, negating each structure in it, and
replacing each rule by its dual.

System SKSgq, shown in Fig. 1.2, has been introduced and shown to be
sound and complete for classical predicate logic in [1]. The first S stands for
“symmetric” or “self-dual”, meaning that for each rule, its dual (or contra-
positive) is also in the system. The K stands for “klassisch” as in Gentzen’s
LK and the second S says that it is a system in the calculus of structures.
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L S{t} _ S(R,R)
SR, R T 5
S(IR,U],T)
*S(R,T),U
S{Vz[R,T]} S(3xR,VzT)
" S[VzR, 32T Y SE(R, T))
) A wi U
S{R} S{t}
S[R, R] S{R}
sty VSt R
S{R[z/7]} . S{veRy
S{3zR} S{R[z/T]}

Figure 1.2: System SKSgq

The g is for “general” (as opposed to atomic) contraction. The q denotes
(first-order) quantifiers.

The first and last column show the rules that deal with quantifiers, in the
middle there are the rules for the propositional fragment. The propositional
rules i],s,w| and c| are called respectively identity, switch, weakening and
contraction. The rule u| is called universal, because it roughly corresponds
to the RV rule in sequent systems, while n| is called instantiation, because it
corresponds to R4.

In the sequent calculus, going up, the RV rule removes a universal quan-
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tifier from a formula to allow other rules to access this formula. In system
SKSgq, inference rules apply deep inside formulae, so there is no need to
remove the quantifier. Note that the premise of the u] rule implies its con-
clusion, which is not true for the RV rule of the sequent calculus. In all rules
of SKSgq the premise implies the conclusion.

As usual, the substitution operation in the rules n| and nT requires 7 to
be free for x in R: quantifiers in R do not capture variables in 7. The term
7 is not required to be free for x in S{R}: quantifiers in S may capture
variables in 7.

The dual of rule carries the same name prefixed with a “co-”, so e.g. w{
is called co-weakening. The rule s is self-dual. The rule i is special, it is
called cut. Rules with a name that contains an arrow pointing downward are
called down-rules and their duals are called up-rules. The system enjoys cut
elimination: all up-rules are admissible, as has been shown in [1].

Sequent calculus derivations easily correspond to derivations in system
SKSgq. For instance, the cut of sequent systems in Gentzen-Schiitte form
[16]:

184,19, )

) "0, (A, [V, )]

Cut'_(I)’A v, A corresponds to iTM
Fo W [P, V]

3 Eliminating Infinite Choice in Inference Rules

There are several rules with infinite choice in system SKSgq: the co-weakening,
the cut, the instantiation and the co-instantiation rule. The equivalence on
structures is infinitely generating as well: equivalence classes are infinite. In
the following we will see for each of these rules and the equivalence how to
to replace them by finitely generating rules without affecting provability.

3.1 The Co-weakening Rule

The rule w7 is clearly infinitely generating, since there is an infinite choice of
atoms, but it can immediately be eliminated by using a cut and an instance
of w| as follows:
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S{R}
"SR, [6.])
>5[t (R, 9)]

ST (R R))

S{a} d 5[]
sty TSy

wi

3.2 The Cut Rule

The cut is the most prominent infinitely generating rule. The first source
of infinite choice we will remove is the arbitrary size of the cut formula. To
that end, consider the atomic cut rule:

S(a,a)
S{f}

The following theorem, also proved in [1], allows us to restrict ourselves
to atomic cuts.

Theorem 1. The rule il is derivable for {ail,s,ul}.

Proof. By an easy structural induction on the structure that is cut. A cut
introducing the structure (R,T') together with its dual structure [R,T] is
replaced by two cuts on smaller structures:

S(RT.[R.T)

_S(R R (1.1)])

SRR, (7))
S(R,T,[R,T]) . S(R,R)
T T

A cut introducing the structure VR together with its dual structure 3z R
is replaced by a cut inside an existential quantifier followed by an instance
of uf:
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S(VzR,3zR)
S 53R}
_ S(vVxR,3R) ETEr!
S{f} TG
These reductions can be repeated until all cuts are atomic. O

The rule ail still is infinitely generating, since there is an infinite choice
of atoms. Let us take a closer look at the atoms:

S(p(t1y .y o)y P(T15 -y Th))
S{f}

There are both an infinite choice of predicate symbols p and an infinite
choice of terms for each argument of p. Let 7 denote 74, . .., 7, and x denote
x1,...,T,. Since cuts can be applied inside existential quantifiers, we can
delegate the choice of terms to a sequence of n| instances:

aif

—

ol S(p(7),p(7))

S{3z(p(x),p(x))}

S T sE
S{f} ~ S{f}

The remaining cuts are restricted in that they do not introduce arbitray
terms but just existential variables. Let us call this restricted form vaif:

— —

S(p(z),p(x))

S{f}

The only infinite choice that remains is the one of the predicate symbol
p. To remove it, consider the rule finitely generating atomic cut

vai|

—

(p(z),p(x))

S
fail —————  where p appears in the conclusion.

S{f

This rule is finitely generating, and we will show that we can easily trans-
form a proof into one where the only cuts that appear are fai] instances.
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Take a proof in the system we obtained so far, that is SKSgq without wT,
and with vail instead of iT. Individuate the bottommost instance of vai| that
violates the proviso of fail:

i

— —

il S(p(z),p(r))

S{f}

where p does not appear in S{f}. We can then replace all instances of p()

and p(z) in the proof above the cut with t and f, respectively, to obtain a
proof of S{f}. It is easy to check that all rule instances stay valid or become
trivial; the cut

S(t,f)
S{fy

vai|

can just be removed, since (t,f) = f.

Please notice that if p appeared in S{f}, then this would not work, be-
cause it could destroy the rule instance below S{f}.

Proceeding inductively upwards, we remove all infinitely generating atomic
cuts.

3.3 The Instantiation Rule

The same techniques also work for instantiation. Consider these two re-
stricted versions of n|:

COSRE@EN L SR/
SR TER I * S{3xR}

An instance of n| that is not an instance of n|, can inductively be replaced
by instances of n|; (chose variables for = that are not free in R):

nl” S{R[x/f(7)]}

S{3xR[z/f(x)]}
ol S{R[z/f(T)]} -  S{3z3zR}
S{3zR} ~ S{3zR}

1
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This process can be repeated until all instances of n| are either instances
of n|; or n/,.
Now consider the following rules, which are finitely generating
S{R[z/f(z S{R[z
oy, SELIEN SRl
S{3zR} S{3zR}

where fn], carries the proviso that the function symbol f either occurs in
the conclusion or is a fixed constant ¢, and fn|, carries the proviso that the
variable y appears in the conclusion (no matter whether free or bound or in
a vacuous quantifier).

Infinitely generating instances of n|; and n|,, i.e. those that are not
instances of fn|; and fn,, respectively, are easily replaced by instances of
finitely generating rules similarly to how the infinitely generating cut was
eliminated. Take the constant symbol ¢ that is fixed in the proviso of fn|,
and throughout the proof above an infinitely generating instance of n|,,
replace all terms that are instances of f() by ¢. For n], we do the same to
all occurences of y, turning it into an instance of fn|;.

3.4 The Equivalence and the Co-instantiation Rule

The equivalence can be broken up into several rules, for associativity, com-
mutativity, and so on. Those rules are clearly finitely generating except for
variable renaming and vacuous quantifier, which, technically speaking, have
an infinite choice of names for bound variables. The same goes for the co-
instantiation rule. Of course these rules can be made finitely generating since
the choice of names of bound variables does not matter. There is nothing
deep in it: the only reason for us to tediously show this obvious fact is to
avoid giving the impression that we hide infinity under the carpet of the
equivalence. The need for the argument below just comes from a syntax
which has infinitely many different objects for essentially the same thing,
e.g. Vap(z),Yyp(y) and VyVap(z) .... If you are not concerned about this
‘infinite’ choice of names of bound variables, then please feel invited to skip
ahead to the next section.

Consider the following rules for variable renaming and vacuous quantifier,
they all carry the proviso that x is not free in R:
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S(¥eRly/e)}  S{3eRly/a])
S{VyR} S{3yR}
S{3zR} S{R)}

S{R} 1S tvery

Let us now consider proofs in the system that is obtained from SKSq by
restricting the equivalence rule to not include vacuous quantifier and variable
renaming and by adding the above rules. This system is strongly equivalent
to SKSq as can easily be checked.

The rule v7 is clearly finitely generating. Let us see how to replace the
rule v| by finitely generating rules, the same technique also works for the
rules a T and « |. Consider the finitely generating rule fv|,, which is v |
with the added proviso that x occurs in the conclusion (no matter whether
bound or free or in a vacuous quantifier) and the infinitely generating rule
v |” which is v | with the proviso that z does not occur in the conclusion.

Fix a total order on variables. Let fv |, be v| with the proviso that z is
the lowest variable in the order that does not occur in the conclusion. This
rule is clearly finitely generating: there is no choice.

Each instance of v| is either an instance of fv |, or of v|’. In a given
proof, all instances of v’ can be replaced by instances of fv ], as follows,
as we we will see now. Starting from the conclusion, going up in the proof,
identify the first infinitely generating vacuous quantifier rule:

|

,S{3zR}
S{R}

x does not occur in S{R}

|
T

where x is not the lowest in our fixed order that does not occur in the
conclusion. Let y be the lowest variable that does not occur in the conclusion.
Now, throughout the proof above, do the following:

1. Choose a variable z that does not occur in the proof. Replace y by z.

2. Replace = by y.
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By definition neither x nor y occur in the conclusion, so the conclusion is not
broken. All the replacements respect that variable occurrences with different
names stay different and variable occurrences with the same names stay the
same. So the proof above stays intact. Replace the v|’ instance by a fv |,
instance and proceed inductively upwards.

4 A Finitely Generating System for Predicate Logic

We now define the finitely generating system FKSgq to be
(SKqu\{IT7WT7nl}) U {faivanl17fnl2} ’

and, for what we showed in the previous section, state

Lemma 1. Each structure is provable in system SKSgq if and only it is prov-
able in system FKSgq.

To put the finitely generating system at work, we use it to show consis-
tency of system SKSgq. Of course, for this purpose it suffices to have finitely
generating cut. Having infinite choice in instantiation would not affect the
following argument.

Lemma 2. The unit f is not provable in system FKSgq.

Proof. No atoms, but only f, t and vacuous quantifiers can appear in such a
proof. It is easy to show that f is not equivalent to t. Then we show that
no rule can have a premise equivalent to t and a conclusion equivalent to f.
This is simply done by inspection of all the rules in FKSgq. O

From the two lemmas above we immediately get consistency:
Theorem 2. The unit f is not provable in system SKSgq.
Now we can make use of symmetry by flipping derivations:

Theorem 3. For all structures R, if there is a proof of R then there is no
proof of R.

Proof. We assume that we have both proofs:

|

R R
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Dualise the proof of R to get

R

f

and compose this derivation with the proof of R to get a proof of f, which is
in contradiction to Theorem 2:

— =y —

5 Conclusion

In this paper we showed simple proof theoretical techniques for making a
system of first order classical logic finitely generating. We believe that these
considerations help make clear that finite choice and cut elimination, or other
normalisation techniques, are conceptually independent.

Some of the techniques we used, for example the replacement of an atom
and its dual by t and f, are folklore. However, in order to produce a finitely
generating system they have to be combined with the reduction of the cut
rule to its atomic form. This crucial ingredient is provided by deep inference
and top-down symmetry, which are not available in the sequent calculus.

In the calculus of structures, there are presentations of various modal
logics [13], linear logic [14, 15] and various extensions of it [9, 10, 4] and
noncommutative logics [5]. All these systems are similar to system SKSgq in
that they include rules which follow a scheme [8], which ensures atomicity of
cut and identity. The techniques shown here thus also work for these logics.
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