
A Local System for Classical Logic

Kai Brünnler1 and Alwen Fernanto Tiu1,2

kai.bruennler@inf.tu-dresden.de and tiu@cse.psu.edu

1 Technische Universität Dresden, Fakultät Informatik, D - 01062 Dresden, Germany
2 The Pennsylvania State University, Department of Computer Science and

Engineering, University Park, PA 16802 USA

Abstract. The calculus of structures is a framework for specifying log-
ical systems, which is similar to the one-sided sequent calculus but more
general. We present a system of inference rules for propositional classical
logic in this new framework and prove cut elimination for it. The sys-
tem enjoys a decomposition theorem for derivations that is not available
in the sequent calculus. The main novelty of our system is that all the
rules are local : contraction, in particular, is reduced to atomic form. This
should be interesting for distributed proof-search and also for complexity
theory, since the computational cost of applying each rule is bounded.

1 Introduction

When implementing inference systems, in a distributed fashion especially, the
need to copy formulae of unbounded size is generally considered problematic. In
the sequent calculus, it is caused by the contraction rule, e.g. in Gentzen’s LK
[2]:

Γ � Φ,A,A
.

Γ � Φ,A

Here, going from bottom to top in constructing a proof, a formula A of un-
bounded size is duplicated. Whatever mechanism performs this duplication, it
has to inspect all of A, so it has to have a global view on A. While this can
be taken for granted on a single processor system, it is harder to achieve on a
distributed system, where each processor has a limited amount of local memory.
The formula A could be spread over a number of processors. In that case, no
single processor has a global view on A.

Let us call local those inference rules that do not require such a global view
on formulae of unbounded size, and non-local those rules that do. Besides con-
traction, another example of clearly non-local behaviour is provided by the pro-
motion rule in the sequent calculus for linear logic [3]. To remove an exclamation
mark from one formula, it has to check whether all formulae in the context are
prefixed with a question mark. The number of formulae to check is unbounded:

� A, ?B1, . . . , ?Bn
.� !A, ?B1, . . . , ?Bn

While there are methods to solve these problems in the implementation, an
interesting question is whether it is possible to solve them proof-theoretically,
i.e. by avoiding non-local rules altogether. This question is answered positively
in this paper for the case of classical propositional logic. The predicative case is
work in progress and is sketched in the conclusion.

Locality is achieved by reducing the problematic rules to their atomic forms.
This is not entirely new: there are sequent systems for classical logic in which
the identity axiom is reduced to its atomic form, i.e.

A � A is admissible for a � a ,

where a is an atom. However, we do not know of any sequent system in which
contraction and weakening are admissible for their atomic forms. In fact, we
believe that such a system does not exist. To achieve our goal, we depart from
the sequent calculus and employ the recently conceived calculus of structures
[5]. In contrast to the sequent calculus, it does not rely on the notion of main
connective and permits the application of rules anywhere deep inside a formula,
exploiting the fact that implication is closed under disjunction and conjunction.
This ability is crucial for the rules of our system. The calculus of structures has
already successfully been employed in [7] to solve the problem of the non-local
behaviour of the promotion rule.

This paper is structured as follows: first, we introduce basic notions of the
calculus of structures. Then we present our system, named SKS, and argue that
its rules are local. We prove that it is equivalent to the Gentzen-Schütte for-
mulation of classical logic, prove cut elimination and state two decomposition
theorems for derivations. In the end, some open problems are identified.

2 Structures and Derivations

Definition 2.1. There are infinitely many literals. Literals, positive or negative,
are denoted by a, b, There are two special literals, true and false, denoted
t and f. The structures of the language KS are generated by

S ::= a | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ ,

where [S1, . . . , Sh] is a disjunction and (S1, . . . , Sh) is a conjunction. S̄ is the
negation of the structure S. Structures are denoted by S, P , Q, R, T , U , V
and W . Structures with a hole that does not appear in the scope of a negation
are denoted by S{ }. The structure R is a substructure of S{R}, and S{ }
is its context. We simplify the indication of context in cases where structural
parentheses fill the hole exactly: for example, S [R, T] stands for S{[R, T]}.
Structures are considered to be syntactically equivalent modulo the relation =,
which is the smallest congruence relation induced by the equations shown in Fig.
1, where R and T stand for finite, non-empty sequences of structures.

Associativity

[R, [T]] = [R, T]

(R, (T)) = (R, T)

Commutativity

[R, T] = [T , R]

(R, T) = (T , R)

Singleton

[R] = R = (R)

Constants

[f, R] = [R]

(t, R) = (R)

Negation

t = f

f = t

[R1, . . . , Rh] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h]

¯̄R = R

Fig. 1. Syntactic equivalence on structures

Structures are somewhere between formulae and sequents. They share with
formulae their tree-like shape and with sequents the built-in, decidable equiva-
lence modulo associativity and commutativity. Structures have a normal form,
unique modulo commutativity, where negation only occurs in the form of nega-
tive literals and all constants that can be removed are removed. In all inductive
arguments to come, structures are considered to be in normal form.

Definition 2.2. An inference rule is a scheme of the kind

S{T}
ρ

S{R} ,

where ρ is the name of the rule, S{T} is its premise and S{R} is its conclusion.
The context S{ } may be empty. In an instance of ρ, the structure taking the
place of R is called redex and the structure taking the place of T is called
contractum. A (formal) system S is a set of inference rules.

Definition 2.3. A derivation ∆ in a certain formal system is a finite chain of
instances of inference rules in the system:

T
π′

V
π

...
ρ′

U
ρ

R

.

A derivation can consist of just one structure. The topmost structure in a deriva-
tion is called the premise of the derivation, and the structure at the bottom is

called its conclusion. A derivation ∆ whose premise is T , whose conclusion is R,

and whose inference rules are in S will be indicated with
T

R

S∆ . A proof Π in

the calculus of structures is a derivation whose premise is t. It will be denoted

by
R

��
SΠ . A rule ρ is strongly admissible for a system S if ρ /∈ S and for every

instance of
T

ρ
R

there is a derivation
T

R

S∆ . A rule ρ permutes over a rule π (or

π permutes under ρ) if for every derivation

T
π

U
ρ

R

there is a derivation

T
ρ

V
π

R

for

some structure V .

3 System SKS

System SKS is shown in Fig. 2. The first S stands for “symmetric” or “self-dual”,
meaning that for each rule its dual (or contrapositive) is also in the system. The
K stands for “klassisch” as in Gentzen’s LK and the last S means that it is a
system on structures.

The rules ai↓, s,m, aw↓, ac↓ are called respectively atomic identity, switch,
medial, atomic weakening and atomic contraction. Their dual rules carry the
same name prefixed with a “co-”, so e.g. aw↑ is called atomic co-weakening. The
rule ai↑ is special, it is called atomic cut. Rules ai↓, aw↓, ac↓ are called down-rules
and their duals are called up-rules.

Note that no rule requires the duplication or the comparison of structures
of unbounded size. The atomic rules only need to duplicate or compare literals.
The two rules that involve structures of unbounded size are m and s. Since they
do not duplicate or compare the structures held by R, T , U and V , there is no
need to inspect those structures at all. Consider structures represented as trees
in the obvious way. Then the switch rule can be implemented by changing the
marking of two nodes and exchanging two pointers (similarly for medial):

S []

�����
��

���
��

��

()

����
��

���
��

��
T

R U

�
S()

�����
��

���
��

��

[]

����
��

���
��

��
U

R T

.

In the sequent calculus, a logical rule gives meaning to the main connective of a
formula by saying that the formula is provable if certain immediate subformulae
are provable. During a proof-search, formulae successively get decomposed, with
their main connectives disappearing.

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S([R, U], T)
s

S [(R, T), U]

S [(R, U), (T, V)]
m

S([R, T], [U, V])

S{f}
aw↓

S{a}
S{a}

aw↑
S{t}

S [a, a]
ac↓

S{a}
S{a}

ac↑
S(a, a)

Fig. 2. System SKS

The rules switch and medial of system SKS do not fit into this scheme. Not
only are they applicable deep inside a formula (or structure, for that matter),
there also is no main connective that is removed. While there is a connection
between the switch rule and the R∧ rule in the sequent calculus (cf. the proof of
Theorem 4.2), the medial rule bears no resemblance of any sequent calculus rule.
Its premise is a disjunction and its conclusion a conjunction. This is impossible
in the sequent calculus, where the conclusion of a rule is always a disjunction (a
sequent) and the premise of a rule is either also a disjunction (for single premise
rules) or a conjunction (for two premise rules, since the two premises are logically
in a conjunction).

Remark 3.1. When talking about derivations, taking the dual means turning
them upside-down, thereby exchanging premise and conclusion, and replacing
each connective and constant by its De Morgan dual. For example

t
ai↓

[b, b̄]
ai↓

([a, ā], [b, b̄])
s

[b, ([a, ā], b̄)]
s is dual to

[a, b, (ā, b̄)]

(a, b, [ā, b̄])
s
(b, [(a, ā), b̄])
s

[(a, ā), (b, b̄)]
ai↑

(b, b̄)
ai↑ .

f

While atomic rules are good e.g. from the point of view of mechanized proof-
search, they are cumbersome for a user of the system. Of course, it should be
possible to contract and weaken on arbitrarily large formulas, just as it should

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R, R]
c↓

S{R}
S{R}

c↑
S(R, R)

Fig. 3. General identity, weakening, contraction and their duals

be possible to introduce arbitrarily large lemmas through the cut rule. Figure 3
shows the general, i.e. non-atomic, versions of the atomic rules in SKS. The
following theorem shows that they can be used.

Theorem 3.2. General identity, weakening, contraction and their duals, i.e. the
rules {i↓, i↑,w↓,w↑, c↓, c↑} are strongly admissible for system SKS. In particu-
lar, the rules i↓, w↓ and c↓ are strongly admissible for {ai↓, s}, {aw↓, ac↑} and
{ac↓,m}, respectively. Dually, the rules i↑, w↑ c↑ are strongly admissible for
{ai↑, s}, {aw↑, ac↓} and {ac↑,m}, respectively.

Proof. We will show strong admissibility of the rules {i↓,w↓, c↓} for the respec-
tive subsystems of SKS. The proof of strong admissibility of their co-rules is
dual.

Given an instance of one of the following rules:

S{t}
i↓

S [R, R̄]
,

S{f}
w↓

S{R} ,
S [R,R]

c↓
S{R} ,

construct a new derivation by structural induction on R:

1. R is a literal: Then the instance of the general rule is also an instance of its
atomic form.

2. R = [P,Q], where P �= f �= Q: Note that [f, f] = f. Apply the induction
hypothesis respectively on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄], [Q, Q̄])
s
S [Q, ([P, P̄], Q̄)]
s ,

S [P,Q, (P̄ , Q̄)]

S{f}
w↓

S [f, Q]
w↓ ,

S [P,Q]

S [P, P,Q,Q]
c↓

S [P, P,Q]
c↓ .

S [P,Q]

3. R = (P,Q), where P �= t �= Q: Apply the induction hypothesis respectively
on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄], [Q, Q̄])
s
S [Q̄, ([P, P̄], Q)]
s ,

S [P̄ , Q̄, (P,Q)]

S{f}
ac↑

S(f, f)
w↓

S(f, Q)
w↓ ,

S(P,Q)

S [(P,Q), (P,Q)]
m

S([P, P], [Q,Q])
c↓

S([P, P], Q)
c↓ .

S(P,Q)
��

Example 3.3. Here are two proofs, one using the general rules, the other one
in SKS, i.e. without using the general rules:

t
i↓

[[ā, b̄], (a, b)]
c↑

[([ā, b̄], [ā, b̄]), (a, b)]
w↓ and

[([ā, b̄, c, d], [ā, b̄]), (a, b)]

t
ai↓

[b̄, b]
ai↓

[b̄, ([ā, a], b)]
s

[ā, b̄, (a, b)]
ac↑

[ā, (b̄, b̄), (a, b)]
ac↑

[(ā, ā), (b̄, b̄), (a, b)]
m

[([ā, b̄], [ā, b̄]), (a, b)]
aw↓

[([ā, b̄, c], [ā, b̄]), (a, b)]
aw↓ .

[([ā, b̄, c, d], [ā, b̄]), (a, b)]

4 Equivalence to Classical Logic

In this section we will see translations between system SKS and system GS1p,
a Gentzen-Schütte formulation of classical logic [8]. Derivations in GS1p are
translated to derivations in SKS (without introducing cuts), and proofs in SKS
are translated to proofs in GS1p (possibly introducing cuts). Cut elimination for
SKS is a consequence of these translations and cut elimination in GS1p.

System GS1p is shown in Figure 4. Its formulae are denoted by A and B. They
contain negation only on atoms. Sequents are denoted by Σ or by � A1, . . . , Ah ,
where h ≥ 0. Multisets of formulae are denoted by Φ and Ψ . Derivations are

denoted by ∆ or

Σ1 · · · Σh

��
��

������∆

Σ

, where h ≥ 0, the sequents Σ1, . . . , Σh are the

premises and Σ is the conclusion. Proofs are denoted by Π.

Ax � A, Ā

� Φ, A � Ψ, Ā
Cut � Φ, Ψ

� Φ, A
R∨L � Φ, A ∨ B

� Φ, B
R∨R � Φ, A ∨ B

� Φ, A � Φ, B
R∧ � Φ, A ∧ B

� Φ, A, A
RC � Φ, A

� Φ
RW � Φ, A

Fig. 4. GS1p: classical logic in Gentzen-Schütte form

Definition 4.1. The functions .
S
and .

K
given below transform formulae in

GS1p into structures and vice versa:

a
S

= a,
A ∨ B

S
= [A

S
, B

S
],

A ∧ B
S

= (A
S
, B

S
)

a
K

= a
t
K

= a• ∨ ā•

f
K

= a• ∧ ā•

[R, T]
K

= R
K
∨ T

K
,

(R, T)
K

= R
K
∧ T

K
,

where a• denotes a fixed arbitrarily chosen atom. The domain of .
S
is extended

to sequents by �
S
= f and � A1, . . . , Ah

S
= [A1

S
, . . . , Ah

S
], where h > 0.

Theorem 4.2. For every derivation

Σ1 · · · Σh

��
��

������∆

Σ

in GS1p there exists a derivation

in SKS
(Σ1

S
, . . . , Σh

S
)

Σ
S

SKS .

Proof. By structural induction on ∆.

Base Cases

If ∆ = Σ, take Σ
S
, otherwise, if ∆ = Ax � A, Ā

then take
t

i↓
[A

S
, Ā

S
]
.

Inductive Cases

We show the case where ∆ =

Σ′
1 · · · Σ′

k

��
��

������

� Φ,A

Σ′′
1 · · · Σ′′

l

��
��

������

� Φ,B
R∧ � Φ,A ∧ B

. The translations for

other cases can be done in a similar way. By inductive hypothesis, we have the

following derivations:

(Σ′
1S

, . . . , Σ′
kS

)

[Φ
S
, A

S
]

SKS∆1 and

(Σ′′
1 S

, . . . , Σ′′
l S

)

[Φ
S
, B

S
]

SKS∆2 ⇒

(Σ′
1S

, . . . , Σ′
kS

, Σ′′
1 S

, . . . , Σ′′
l S

)

([Φ
S
, A

S
], [Φ

S
, B

S
])

s; s
[Φ
S
, Φ

S
, (A

S
, B

S
)]

c↓
[Φ
S
, (A

S
, B

S
)]

SKS∆1;∆2

.

��
Corollary 4.3. If � A is provable in GS1p then � A

S
is provable in SKS.

Theorem 4.4. If P is provable in SKS then � P
K

is provable in GS1p.

Proof. Let P = S{R} and S{T}
ρ

S{R}

��
SKSΠ

be its proof in SKS. The proof of this theorem

is based on a known property of GS1p, that is, if � R
K
, T

K
is provable then so is

� S{R}
K
, S{T}

K
.

Base Cases

If Π = t then take

Ax � a•, ā•
R∨L;R∨R � a• ∨ ā•, a• ∨ ā•

RC
a• ∨ ā•

, otherwise, if Π =
t

ai↓
[a, ā]

then take the same derivation, but with a• replaced by a.

Inductive Cases
We assume that S{T}

K
is provable in GS1p. By using the cut rule, we get

� S{T}
K

� S{R}
K
, S{T}

KCut � S{R}
K

. It is enough to show that � R
K
, T̄

K
is provable.

We show the case for ρ =
S([U, V],W)
s
S [(U,W), V]

. The property holds for the rest of the

rules of SKS as well, as can easily be verified.

Ax � U
K
, U

KRW 2

� U
K
, U

K
, V

K
,W

K

Ax � V
K
, V

KRW 2

� V
K
, V

K
, U

K
,W

KR∧ � U
K
, V

K
, U

K
∧ V

K
,W

K

Ax � W
K
,W

KRW 2

� W
K
,W

K
, V

K
, U

K
∧ V

KR∧ � U
K
∧ W

K
, V

K
, U

K
∧ V

K
,W

KR∨L2;R∨R2

� (U
K
∧ W

K
) ∨ V

K
, (U

K
∧ V

K
) ∨ W

K
, (U

K
∧ W

K
) ∨ V

K
, (U

K
∧ V

K
) ∨ W

KRC2

� (U
K
∧ W

K
) ∨ V

K
, (U

K
∧ V

K
) ∨ W

K
.

The rule ρn denotes n applications of ρ. ��
Cut elimination for SKS can be obtained by using the above translations:

Given a proof Π in SKS, we can transform it to a proof Π ′ in GS1p and eliminate
all the cuts there. The resulting cut-free proof in GS1p can then be translated
back to a proof Π ′′ in SKS. The complete case analysis of the proof of Theorem
4.2 shows that this transformation does not produce new cuts, and hence Π ′′ is
a cut-free proof in SKS.

5 Cut Elimination and Decomposition

There is a very natural way of proving cut elimination for system SKS by using
semantics, using the idea employed in [8] for the system G3. The proof actually
gives us something more than just cut elimination, it eliminates all up-rules and
also yields a decomposition of proofs into separate phases.

Theorem 5.1 (Cut Elimination, semantically).

For every proof
S

��
SKS there is a proof

S′′

��
{ai↓}

S′
{aw↓}

S

{s,ac↓,m}

.

Proof. Consider the rule distribute

S([R, T], [R,U])
d↓

S [R, (T,U)]
,

which can be realized by a contraction and two switches:

S([R, T], [R,U])
s
S [R, ([R, T], U)]
s

S [R,R, (T,U)]
c↓

S [R, (T,U)]

and thus by Theorem 3.2 is strongly admissible for {s, ac↓,m}. Build a derivation
S′

S

{d↓} , by going upwards from S applying d↓ as many times as possible. Then

S′ will be in conjunctive normal form, i.e.

S′ = ([a11, a12, . . .], [a21, a22, . . .], . . . , [an1, an2, . . .]) .

S is valid because there is a proof of it. The rule d↓ is invertible, so S′ is also valid.
A conjunction is valid only if all its immediate substructures are valid. Those

are disjunctions of atoms. A disjunction of atoms is valid only if it contains an
atom a together with its negation ā. Thus, more specifically, S′ is of the form

S′ = ([b1, b̄1, a11, a12, . . .], [b2, b̄2, a21, a22, . . .], . . . , [bn, b̄n, an1, an2, . . .]) .

Let S′′ = ([b1, b̄1], [b2, b̄2], . . . , [bn, b̄n]) .

Obviously, there is a derivation
S′′

S′
{aw↓} and a proof

S′′

��
{ai↓} . ��

Let us call system KS the rules shown in Fig. 5. We know that for proof-search
in SKS system KS is sufficient:

Corollary 5.2. For every proof
S

��
SKS there is a proof

S

��
KS .

As a result of cut elimination, sequent systems fulfill the subformula property.
Our case is different, because our rules do not split the derivation according to
the main connective of the active formula. However, system KS satisfies the main
consequence of the subformula property: no new atoms have to be introduced in
proof-search, i.e. the branching of the search tree is finite.

S{t}
ai↓

S [a, ā]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S([R, T], U)
s

S [(R, U), T]

S [(R, T), (U, V)]
m

S([R, U], [T, V])

Fig. 5. System KS

Given that in system SKS the identity is a rule, not an axiom as in the
sequent calculus, a natural question to ask is whether the applications of the
identity rule can be restricted to the top of a derivation. For proofs, this question
is already answered positively by Theorem 5.1. It turns out that it is also true
for derivations. Because of the duality between ai↓ and ai↑ we can also push the
cuts to the bottom of a derivation. While this can be obtained in the sequent
calculus (using cut elimination), it can not be done with a simple permutation
argument.

We first reduce atomic identity and cut to shallow atomic identity and cut,
the following rules:

S
ais↓ (S, [a, ā])

and
[S, (a, ā)]

ais↑
S

.

Lemma 5.3. The rule ai↓ is strongly admissible for {ais↓, s}. Dually, the rule
ai↑ is strongly admissible for {ais↑, s}.
Proof. By an easy structural induction on the context S{ }. Details are in [1].

��
Theorem 5.4 (Decomposition: separation of identity and cut).

For every derivation
T

R

SKS there is a derivation

T

V

{ai↓}

U

SKS \{ai↓,ai↑}

R

{ai↑}

.

Proof. By Lemma 5.3 we can reduce atomic identities to shallow atomic identi-
ties and the same for the cuts. It is easy to check that the rule ais↓ permutes over
every rule in SKS and the rule ais↑ permutes under every rule in SKS. Instances
of ais↓ and ais↑ are instances of ai↓ and ai↑, respectively. ��

Contraction allows the repeated use of a statement in a proof by allowing to
copy it at will. It should be possible to copy everything needed in the beginning,
and then go on with the proof without ever having to copy again. This intuition
is made precise by the following theorem and holds for system SKS. We do
not know of such a result for the sequent calculus. There are sequent systems
for classical propositional logic that do not have an explicit contraction rule,
however, they treat the context additively, so contraction is “built-in” and used
throughout the proof.

Theorem 5.5 (Decomposition: separation of atomic contraction).

For every derivation
T

R

SKS there is a derivation

T

V

{ac↑}

U

SKS \{ac↓,ac↑}

R

{ac↓}

.

Proof. The obstacles to permuting up the instances of ac↑ and down those of ac↓
are identity and cut, respectively. The solution is to turn the derivation into a
proof, eliminate the cuts, turn the proof into a derivation again (using one cut),
and then permuting up or down the contractions. The proof can be found in
[1]. ��

6 Conclusions and Open Problems

We have presented SKS, a system of inference rules for classical logic in the
calculus of structures. Its main novelty is that all rules are local and their com-
putational cost can thus be bounded. To achieve this, the greater expressivity

of the calculus of structures wrt. the sequent calculus was used, in particular
its ability of making deep inferences. We proved cut elimination for system SKS
which makes it suitable for proof-search. Actually, a subset KS of inference rules
is already complete. We have also shown properties of our system that seem not
to hold for any sequent presentation of classical logic, that is, strong admissibility
of cut, weakening and contraction for their atomic forms and the decomposition
theorems for derivations.

The main open problem is a more powerful decomposition theorem. To that
end, let us call core those rules in the system that are necessary for decomposing
the general cut into atomic cuts. In SKS, the core consists of one single rule: the
switch. Can we separate out, i.e. push above the identities or below the cuts,
anything that is not core?

Conjecture 6.1. For every derivation
T

R

SKS there is a derivation

T

U4

non-core

U3

{ai↓}

U2

core

U1

{ai↑}

R

non-core

.

This conjecture has been proved for two other systems in the calculus of
structures [6] and this led to cut elimination. In these cut elimination proofs,
atomic cuts are seen as instances of a super atomic cut, which is then pushed up
all the way through the proof until it hits an identity that makes it disappear.
In system SKS, such a super atomic cut cannot be pushed up over the rules ac↓
and m. Cut elimination would be much easier to prove syntactically could we
rely on Conjecture 6.1. Then all the problematic rules that could stand in the
way of the cut are either below all the cuts already or at the top of the proof and
thus trivial, since their premise is t. Cut elimination is thus an easy consequence
of such a decomposition theorem. Note that the proof of Theorem 5.5 falls short
of simplifying a syntactical proof of cut elimination not only because instances
of the rule m remain above the cuts, but also because it uses cut elimination.

Modularity We have proved cut elimination for system SKS, but we have no
syntactic proof inside the calculus of structures, i.e. without detour through the
sequent calculus and without resorting to semantics. We are interested in such
a proof because it can be modular, contrary to cut elimination proofs in the
sequent calculus, cf. Girard [4] p.15. This modularity stems from the fact that
due to atomicity of the cut, cut elimination in the calculus of structures is not
a nested induction taking into account the cut rank; instead it is based on a
number of lemmas about permutability of rules wrt. one another (for a rather

general notion of permutability). Those lemmas of course are not affected when
new rules are added to the system.

Predicative logic We are currently investigating the following extension of system
SKS to predicative logic: adding quantifiers to the language in the obvious way,
adding the corresponding De Morgan laws and the equation

∀xR = ∃xR = R if x is not free in R,

and adding the rules from Fig. 6. Very roughly, rules {u↓,u↑} correspond to the
R∀ rule in GS1 while rules {n↓,n↑} correspond to R∃. The rules {ce↓, ce↑, ca↓, ca↑}
are just needed to reduce contraction to its atomic form. For proofs, the up-rules
{n↑,u↑, ce↑, ca↑} are admissible. A nice common feature of all these rules is that
their premise implies their conclusion (literally, without any added quantifica-
tion). This is not true of any sequent calculus presentation known to us because
of the R∀ rule.

We do not claim that this system is local. In the rule n↓ a term t of un-
bounded size is copied into an unbounded number of occurrences of x in R.
Maybe unification could be incorporated into the system to deal with this in a
local manner, but we have not explored this option. The question is whether this
can be done without losing the good properties, cut elimination especially.

S{∀x[R, T]}
u↓

S [∀xR,∃xT]

S(∃xR,∀xT)
u↑

S{∃x(R, T)}
S{R[x ← t]}

n↓
S{∃xR}

S{∀xR}
n↑

S{R[x ← t]}

S [∃xR,∃xT]
ce↓

S{∃x[R, T]}
S{∀x(R, T)}

ce↑
S(∀xR,∀xT)

S [∀xR,∀xT]
ca↓

S{∀x[R, T]}
S{∃x(R, T)}

ca↑
S(∃xR,∃xT)

Fig. 6. Extension to predicative logic

Semantics for derivations Structures are in a one-to-one correspondence with
traces [5] that are graphs with colored edges satisfying certain simple properties.
The atom occurrences of a structure are the nodes of its trace and the colors of
the edges are determined by the logical relation between the atom occurrences.
In [5] it is shown that the switch rule can be characterized in terms of conditions
on traces. Those conditions can be checked locally in the sense that they involve
at most four atoms at a time.

The question is whether the rule m can be characterized in the same way.
This would be a step towards a distributed system in which proof-search is driven
by pairs of complementary atoms, comparable in spirit to the connection method
[9]. At present, however, this question is entirely open.

Hopefully, trace semantics can help in understanding derivations. Given the
existence of a derivation in a subset of SKS from a known S to an unknown T ,
what is the relation between (the traces of) S and T? What can be inferred
about T , i.e. what graph-theoretic properties on traces are preserved by the
inference rules? By classical semantics we know that all of them preserve truth
(successful valuations). The problem is that this does not tell us much about
T , in particular it tells us nothing about atom occurrences, their number, and
their logical relations. A better understanding of this would also help in finding
a decomposition theorem as sketched in Conjecture 6.1.

Acknowledgments

This work has been accomplished while the first author was supported by the
DFG Graduiertenkolleg 334. We would like to thank the members of the proof
theory group at Dresden for providing an inspiring environment, especially Alessio
Guglielmi, who introduced us to proof theory. He discovered the rules for pred-
icative logic {u↓,u↑,n↓,n↑} and helped us with this paper in numerous ways.
Steffen Hölldobler and Lutz Straßburger carefully read preliminary versions of
this paper and made helpful suggestions. We are grateful to Bernhard Ganter
for noting the similarity between the medial law studied in algebra and our rule
m, giving it its current name.

References

1. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. Techni-
cal Report WV-2001-02, Dresden University of Technology, 2001. On the web at:
http://www.wv.inf.tu-dresden.de/˜kai/LocalClassicalLogic.ps.gz.

2. Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1969.

3. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
4. Jean-Yves Girard. Proof Theory and Logical Complexity, Volume I, volume 1 of

Studies in Proof Theory. Bibliopolis, Napoli, 1987. Distributed by Elsevier.
5. Alessio Guglielmi. A calculus of order and interaction. Technical Report

WV-99-04, Dresden University of Technology, 1999. Available on the web at
http://www.wv.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

6. Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. Technical Report WV-01-04, Dresden University of Tech-
nology, 2001. Accepted by the Annual Conference of the European Association for
Computer Science Logic, CSL’01.

7. Lutz Straßburger. MELL in the calculus of structures. Technical Report WV-2001-
03, Dresden University of Technology, 2001. On the web at: http://www.ki.inf.tu-
dresden.de/˜lutz/els.pdf.

8. Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 1996.

9. W. Bibel. On matrices with connections. Journal of the Association for Computing
Machinery, 28(4):633–645, 1981.

