On contraction and the modal fragment

Kai Briunnler Dieter Probst Thomas Studer

October 26, 2007

Abstract

We observe that removing contraction from a standard sequent
calculus for first-order predicate logic preserves completeness for the
modal fragment.

1 Introduction

From a proof-theoretic perspective, one could say that the rule of contraction
is the reason for the undecidability of first-order logic. Contraction basically
states that whenever we have derived a premise AV A, then we are allowed to
infer A. Such a structural rule leads to undecidability since in a proof search
procedure the following may happen: Assume we have to show that a formula
A holds. This formula may have been derived by the rule of contraction.
Thus we have to show that AV A holds. Again this formula may have been
derived by contraction. Now we have to show that (AV A) VvV (AV A) holds
and so on ad infinitum.

If contraction is excluded from a deductive system for first-order logic
(or only a restricted form of it is available), then no such infinite paths are
possible in the proof search procedure and thus it becomes decidable whether
a formula is derivable or not. However, there is no syntactic characteriza-
tion available for the derivable formulae of a contraction free fragment of
first-order logic. Ketonen and Weyhrauch [6] investigate a deductive system
without contraction. They can show that for each valid formula, there is a
logically equivalent formula which can be derived in their calculus. Grishin
[5] also studies the contraction free fragment. He presents an algebraic se-
mantics for which he can prove completeness. Moreover, he introduces a set
theory that is based on contraction-free logic. Cantini [2] further investigates
Grishin’s set theory and shows an undecidability result. A related system is
studied by Petersen [7].



We present a one-sided sequent calculus T in which only a controlled
form of contraction is available. T derives sequents, that are finite multisets
of formulae which are interpreted disjunctively. Usually contraction is built
into deductive systems either by adding it explicitly as structural rule or by
formulating the logical rules such that they contain contraction implicitly
(this concerns in particular the rule for existential quantification). In T
neither do we have a rule for contraction nor is contraction incorporated into
the rule for existential quantification. Hence, T includes the following rule
for existential quantification

(I)B()

&, JuB(u) (3¢)-

Thus, from the premise JuA(u), A(u) we can infer JuA(u), JuA(u) but not
JuA(u).
The only place where a (weak) form of contraction occurs in T is the rule
for conjunctions
oA ¢, B
O ANB (-

In this rule, ® occurs twice in the premises but only once in the conclusion.
Thus there is some contraction built in, but this does not make T undecidable.

In the present note, we prove completeness of T with respect to the modal
fragment of first-order logic. This fragment is given by the standard first-
order translation of multi-modal logic K,, [1]. Therefore, we can make use
of a contraction-free deductive system for K,, to establish completeness of T
for the modal fragment. Hence, we obtain a syntactic characterization of a
fragment of first-order logic for which T is complete.

2 First-Order Logic

We work with the language £; of first-order logic which comprises countably
many free and bound variables, countably many relation symbols of every
arity (Pp, P, ... are the unary relation symbols and Ry, Rs, . .. are the binary
relation symbols of £1) as well as the logical symbols ~ (atomic negation),
V (disjunction), A (conjunction), 3 and V (existential and universal quantifi-
cation). We let u,v, w range over variables. The notation A(u) is used to
indicate that the variable u may occur free in A. By FV(A) we denote the
set of variables occurring in free in A. The modal fragment £M is a subset
of the formulae of £, as defined below.

Definition 1. The formulae of £} are defined inductively as follows.



1. If P is a unary relation symbol, then P(u) and its negation ~P(u) are
(atomic) £ formulae for every variable u.

2. If A and B are £M formulae with FV(A) = FV(B) then A A B and
AV B are L} formulae.

3. Let R be a binary relation symbol and B(v) be an £M formula. Then
Vo(~R(u,v) V B(v)) and Jv(R(u,v) A B(v))
are LM formulae for every variable u which is different from wv.

Note that an £} formula contains exactly one variable free.

We will use the standard semantics for first-order languages. If M is an
interpretation and A is a formula, then M = A means that A holds in M.
A formula A is valid, denoted by = A, if it holds in all interpretations.

Next, we are going to present the one-sided sequent calculus T in which
only a restricted form of contraction is available. A sequent is a finite multiset
of formulae. We employ I'; A, ¥, @, ... to denote sequents. T comprises the
following axioms and rules.

Axioms: For all sequents ® and atomic formulae P of £

o P ~P (Azx).
Propositional rules: For all sequents ® and formulae A and B of £;
o, A B ) D, A o, B ()
o, AV B ’ O, ANB ’
Quantifier rules: For all sequents ®, formulae B, and variables u of £;
®, B(u) )
¢, VuB(u)

where we assume that the variable u does not occur free in the conclu-
sion @, YuB(u), and
®, B(u)
O, JuB(u)
By induction on the length of derivations, we can easily see that a weak-
ening lemma holds for T.
Lemma 2. For all sequents I' and A we have THFT = T+ T', A.
Remark 3. If we replace the rule (3¢) with the following
&, JuB(u), B(u) @
&, JuB(u) ’

then we obtain a system which is complete for full first-order logic.

(Je).




3 Modal Logic

We use the language L), of multi-modal logic which comprises countably
many atomic propositions py, pa, ... and the symbols ~ (atomic negation), V
(disjunction), A (conjunction), ¢; and [J; (modal operators) for every natural
number .

We make use of the standard Kripke semantics for modal languages. A
formula of L, is wvalid if it is satisfied in every world in every Kripke struc-
ture. The deductive system K for multi-modal logic derives finite multisets
(sequents) of L, formulae. Again, only the (A) rule has a restricted form of
contraction built-in. The system K is defined by the following axioms and
rules:

Axioms: For all sequents I' and propositions p of Ly

Fapa Np (A'T)

Propositional rules: For all sequents I' and formulae A and B of Ly,

[,A B W) I, A I,B N
I'AV B ’ I'"AANB '

Modal rules: For all sequents I" and ¥ and formulae A of £;; and all natural
numbers ¢ T A

or.oax
where <>'i{B17 R ,Bk} = {OiBh ey Osz}

Soundness and completeness of K can be obtained by standard methods,
see for instance [3, 4]. So we will only sketch a completeness proof.

Theorem 4. The system K is sound and complete for Ly; formulae.
Proof. We call a finite set ® of L£;; formulae saturated if
1. K/ O,
2. ANB € ®implies A€ & or Be ®, and
3. AV B e ®implies A€ ® and B € 9.
It is easy to show that
for each sequent A with K I/ A, there exists a saturated set ®

(1)

such that ® is a superset of the underlying set of A.
We define the Kripke structure M = (W, Ry, ..., R,, \) as follows:
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1. W consists of all saturated sets,
2. for any &,V € W we set (®,V) € R; if {A : ;A€ d} C U,
3. Ap) ={PeW : p¢ D}
By induction on the structure of the formula A we can show that
for all formulac A and all ® € W we have A€ & = M, d = A, (2)

We only show the case for A = 0;B. We have K I/ B, {C : {;,C € ®},
since otherwise by the (O) rule we would obtain K I ® which contradicts @
saturated. By (1) there exists ¥ saturated with B,{C' : ¢;,C € &} C U. By
the induction hypothesis we obtain M, W £ B. The definition of R; gives us
(®,¥) € R;. Hence we conclude M, ® (= 0, B.

To obtain completeness of K assume K I/ A for some formula A. By (1)
there exits a saturated set ® which contains A. By (2) we find M, ® j= A.
Thus A is not valid. [

4 Completeness

In this section, we show completeness of T with respect to £M formulae.
We start with recalling the inductive definition of the standard translation

STu(:).

L STu([~pi) == [~ Fi(w),
2. ST, (A% B) :=ST,(A) «ST,(B) for x € {V, A},
3. STu([0iA) := Vo(~Ri(u,v) V STy (A)),
Tu(0iA) == Ju(Ri(u, v) AST,(A)),
5. STu([~]pi) == [~ Fi(v),
6. ST,(A* B) :=ST,(A) xST,(B) for x € {V,A},
7. STy(L;A) := Vu(~Ri(v,u) V STy (A)),
8. ST, (0:iA) := Fu(Ri(v, u) A ST, (A)).
where v is a variable different from u. For a sequent ® = Ay, ..., A, of Ly

formulae, we define ST, (®) = ST, (A41),...,STu(A4,).
If we identify £M formulae that differ only in the names of bound variables
(whether an £} formula is provable in T does not depend on the names of

b}



its bound variables), then each £} formula A(u) is the standard translation
ST.(C) of some L), formula C, and conversely, for each L, formula C,
ST.(C) is an LY formula.

Lemma 5. Let ® be a sequent of Ly formulae. Then
KIX® = THFST,(®).
for each variable u of L.

Proof. The claim is easily shown by induction on n. The only critical case
is if K = ® has been obtained by a () rule. Let ® := {;¥,[;A, = and
I' := ST,(®) which is then of the form

Fu(R;(u,v) A By(v)),...,3v(Ri(u,v) A Bg(v)), Yo(~R;(u,v) vV C(v)), .

By the induction hypothesis we get T + Bi(v),..., Br(v),C(v). Adding
~R;(u,v) by weakening yields T F By(v),..., Bg(v), ~R(u,v),C(v). Now
consider the following derivation in T where A := By(v), ..., Bi(v).

Ri(“?”)aAaNRi(ua U),O(U) Bl( ) RZ(U, U) ( )
Ri(u,v) A B1(v), A, ~R;(u, v) C(v)
Fu(R;(u,v) A B1(v)), A, ~R;(u,v), C(v)

Fu(R;(u,v) A B1(v)), ..., 3v(R;(u,v) A Bg(v)), ~R;(u,v), C(v)
Fu(R;(u,v) A By(v)),...,3v(Ri(u,v) A Bg(v)), ~R;(u,v) V C(v)
Fu(R;(u,v) A B1(v)),...,3v(Ri(u,v) A Bg(v)), Yo(~R;(u,v) V C(v))
Again applying weakening yields T F I" which finishes our proof. O]

Theorem 6. For each LY formula A(u),
THAu) <= [ Au).

Proof. The direction from left to right is the standard soundness result. To
show the direction from right to left assume that A(u) is valid. There is
an Ly formula B such that ST,(B) = A(u) (modulo renaming of bound
variables). Thus ST, (B) is a valid £ formula and therefore, B is valid with
respect to the Kripke semantics. Completeness of K gives us K+ B. By the
above lemma, we finally conclude T F A(u). O



5 Conclusion

We have introduced a first-order calculus T in which only a restricted form of
contraction is available. Making use of a deductive system for propositional
multi-modal logic, we have established completeness of T for the modal frag-
ment of first-order logic. Our work provides a first step towards a syntactic
characterization of first-order formulae that are derivable with a restricted
form of contraction.

We believe that calculi with controlled contraction are a proof-theoretic
answer to the question about the robust decidability of modal logics [8]. Thus
our work complements the model-theoretic and automata-theoretic point of
view on this issue. From the perspective of first-order logic, the principles
underlying the decidability of modal logics have not been well understood.
The old argument that the modal fragment is contained in the two variable
fragment of first-order logic is too simple and does not explain the decidability
of modal logic in an appropriate way. In our opinion, the approach using
controlled contraction provides a better explanation. For instance, the proof
search procedure in T immediately shows that the validity problem for K, is
in PSPACE. A result which does not follow from the two variable argument.

The modal fragment only characterizes a subset of the formulae provable
without contraction. Obvious candidates for a full characterization would be
the so-called guarded fragments. However the following guarded formula is
valid but not derivable in such a calculus

~P(u) V 32(Q(x) AVy(~R(y) vV ~P(y))) vV Fz(P(x) A (R(x) VVy~Q(y))).
This leads to two questions.

1. Is there a syntactic characterization of formulae provable without con-
traction?

2. Can we characterize guarded fragments in terms of some restriction of
contraction?

We hope that the observations in the present note provide a first step towards
answers to these questions.
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