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Abstract

Currently known sequent systems for temporal logics such as linear time temporal
logic and computation tree logic either rely on a cut rule, an invariant rule, or an
infinitary rule. The first and second violate the subformula property and the third
has infinitely many premises. We present finitary cut-free invariant-free weakening-
free and contraction-free sequent systems for both logics mentioned. In the case of
linear time all rules are invertible. The systems are based on annotating fixpoint
formulas with a history, an approach which has also been used in game-theoretic
characterisations of these logics.
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1 Introduction

Temporal logics are used for specification and verification of reactive systems.
Two prominent representatives are linear time temporal logic, LTL for short,
and computation tree logic, CTL for short. Both are well-studied and several
axiomatisations and decision procedures are available. For LTL we just refer
to Lichtenstein and Pnueli [13], which is a recent overview of the development
of this subject and contains further references. For CTL we refer to Emerson’s
handbook article [1].

In this paper, we give cut-free sequent systems for propositional temporal log-
ics. A cut-free sequent system is a valuable tool that helps us understand a
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logic. It is typically much easier to carry out proof search in a cut-free sequent
system than in a Hilbert-style axiom system. Proof search in the sequent cal-
culus is typically easy to understand because of the clear logical reading of
the inference rules. We feel that the same cannot be said, for example, for
automata theoretic constructions or procedures that compute strongly con-
nected components in a graph, which typically happens in tableau procedures.
So, even when Hilbert-style axiom systems as well as decision procedures are
available, it is worthwhile to look for a cut-free sequent system.

Several sequent systems have been known for a long time for temporal logics,
but they all have their problems. Some are infinitary, i.e. they contain a rule
with an infinite number of premises such as

` Γ, ϕ ` Γ,#ϕ ` Γ,##ϕ . . .
ω

` Γ,2ϕ
,

where #ϕ means that ϕ holds at the next moment and 2ϕ means that ϕ
holds always from now on.

Other systems are not truly cut-free, that is they contain a rule such as

` Γ, ψ ` ψ,#ψ ` ψ, ϕ
2

` Γ,2ϕ
,

which clearly violates the subformula property since ψ is an arbitrary formula.
Systems of the first kind can be found for example in Kawai [9]. Gudzhinskas [6]
and Paech [14] give systems of the second kind. An exception is Pliuškevičius
[15], who gives a finitary and truly cut-free system for a fragment of linear
temporal logic with first-order quantifiers. However, this fragment does not
include full propositional linear temporal logic.

Jäger et al. propose using the small model property to finitise the ω-rule for
the logic of common knowledge [8] and for the full modal µ-calculus in [7].
This leads to finitary cut-free systems, which have a form of the subformula
property. However, the finitary version of the ω-rule has a number of premises
which is exponential in the size of the conclusion. Also, this approach relies
on the finite model property, rather than allowing us to prove it.

Typically a tableau system closely corresponds to a cut-free sequent system.
Unfortunately this is not true in the case of temporal logics, cf. Goré [5]. Here
the tableau procedure usually consists of two passes: in the first it constructs a
certain graph, from which it deletes certain strongly connected components in
the second pass. This two-pass nature gets in the way of a correspondence to
a sequent system. Schwendimann gives a one-pass tableau procedure for LTL
in [16], but it works on a more intricate data structure than sets of formulas
and thus here as well it is hard to see a correspondence to a sequent system.

Here we use the idea behind focus games put forward by Lange and Stirling
in [12] in order to obtain finitary cut-free sequent systems for LTL and CTL.
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Essentially, we just reformulate focus games as a sequent system, or, in game-
theoretic terms, reduce a two-player game with a winning condition that is
not history-free to a history-free one-player game – and thus not much of a
game anymore.

Focus games are based on two observations. Consider unary LTL in negation
normal form and the “naive” sequent calculus, where we essentially just add
the rules which unfold the fixpoint formulas to a sequent calculus for propo-
sitional logic:

Γ
#

#Γ,Σ

Γ,#3ϕ, ϕ
3

Γ,3ϕ

Γ, ϕ Γ,#2ϕ
2

Γ,2ϕ

The first observation is that this system almost works: the only thing that
goes wrong in a standard completeness argument is that we cannot extract a
countermodel from a failed branch if we always choose the right premisse in
the 2-rule. Thus there is no proof for the induction axiom

ϕ ∧ 2(ϕ ⊃ #ϕ) ⊃ 2ϕ ,

which is of course valid. Proof search fails as follows, notice how the endsequent
reappears on the upper right:

3(ϕ ∧#ϕ), ϕ, ϕ

#3(ϕ ∧#ϕ), ϕ, ϕ,#2ϕ

3(ϕ ∧#ϕ), ϕ,2ϕ
#

#3(ϕ ∧#ϕ),#ϕ,ϕ,#2ϕ
∧

#3(ϕ ∧#ϕ), ϕ ∧#ϕ,ϕ,#2ϕ
3

3(ϕ ∧#ϕ), ϕ,#2ϕ
2

3(ϕ ∧#ϕ), ϕ,2ϕ .

However, the obvious idea of just closing a cyclic branch as axiomatic will lead
to an unsound system. Consider for example the following derivation, where
the endsequent is not valid:

2ϕ,#32ϕ
3

32ϕ
#
ϕ,#32ϕ

2ϕ,#32ϕ
3

2ϕ,32ϕ
#

#2ϕ,#32ϕ
2

2ϕ,#32ϕ .

The idea behind focus games is to close a cyclic branch if there is an 2-formula
such that whenever the 2-rule is applied to it between the two occurrences of
the cyclic sequent, the branch is along the right premise. Thus, the rightmost
branch of the derivation of the induction axiom would be closed, as would
be the right branch in the second derivation, but not the left branch in the
second derivation.
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The second observation which is crucial to focus games is that the following
rule is sound:

Γ, ψ(νx.Γ ∨ ψ(x))

Γ, νx.ψ(x) ,

and thus whenever we unfold an 2-formula (a greatest fixpoint), we can
weaken it with the context. This observation goes back to Kozen [10] and
is behind the soundness proofs for both focus games and the sequent systems
that we consider here.

2 Linear-Time Temporal Logic, LTL

Formulas. The set of (LTL) formulas is given by the grammar

ϕ ::= p | p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ .

Propositions p and their negations p are also called atoms. Atoms are denoted
by a and b. A formula with X (next) as its main connective is called a next
formula. Formulas with U (until) or R (release) as their main connective are
respectively called release formulas and until formulas and collectively they
are called fixpoint formulas. The negation ϕ of a formula ϕ is defined as usual:

p = p ϕ ∨ ψ = ϕ ∧ ψ ϕ Uψ = ϕ Rψ

Xϕ = Xϕ ϕ ∧ ψ = ϕ ∨ ψ ϕ Rψ = ϕ Uψ .

Models. A model, denoted by σ, is an ω-sequence of sets of propositions. The
element of the sequence at position i is denoted by σ(i) and σ(0) denotes the
first element. We now define the relation |=. We have σ, i |= p iff p ∈ σ(i),
σ, i |= p iff p 6∈ σ(i), σ, i |= Xϕ iff σ, i + 1 |= ϕ, σ, i |= ϕ ∨ ψ iff σ, i |= ϕ or
σ, i |= ψ, σ, i |= ϕ ∧ ψ iff σ, i |= ϕ and σ, i |= ψ. Further we have

σ, i |= ϕ Uψ iff ∃j ≥ i (σ, j |= ψ and ∀i ≤ k < j σ, k |= ϕ) ,

σ, i |= ϕ Rψ iff ∀j ≥ i (σ, j |= ψ or ∃i ≤ k < j σ, k |= ϕ) ,

and σ |= ϕ iff ∀i σ, i |= ϕ. A formula ϕ is valid, denoted by |= ϕ, if ∀σ∀i σ, i |=
ϕ and it is satisfiable if ∃σ∃i σ, i |= ϕ.

Sequents and annotated formulas. Our sequents will provide a way to store
the history of a release formula, which is the set of the contexts in which a
rule has been applied to it. To that end we define annotated formulas, which
are given by the grammar

ϕH ::= ϕ RH ϕ | X(ϕ RH ϕ) ,
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aid
Γ, a, a

∨
Γ, ϕ, ψ

Γ, ϕ ∨ ψ
∧

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

U
Γ, ϕ, ψ Γ, X(ϕ Uψ), ψ

Γ, ϕ Uψ
R

Γ, ψ Γ, X(ϕ Rψ), ϕ

Γ, ϕ Rψ

rep
Γ, ϕ RH,Γ ψ

foc
Γ, ϕ R∅ ψ

Γ, ϕ Rψ
X

Γ

XΓ, a1, . . . , an

RNH
Γ, ψ Γ, X(ϕ RH,Γ ψ), ϕ

Γ, ϕ RH ψ

Fig. 1. System LT1.

where the annotation or history H is a finite set of finite sets of formulas. Put
differently, an annotated formula is a pair, consisting of an annotation and of
a release formula which is possibly prefixed with an next.

Let the empty disjunction of formulas denote the formula p∧p for some p and
let the the empty conjunction of formulas be its negation. If Γ = {ϕ1, . . . , ϕn}
is a finite set of formulas then the disjunction of all its formulas ϕ1∨· · ·∨ϕn is
called its corresponding formula and is also denoted by Γ. The corresponding
formula of an annotation H = {Γ1, . . . ,Γn} is the formula Γ1 ∧ · · · ∧Γn which
is also denoted by H. The corresponding formula of an annotated formula is
obtained by replacing

ϕ RH ψ by (ϕ ∨H) R (ψ ∨H) .

The semantics of an annotated formula is given by its corresponding formula.

A presequent is a finite set of formulas and annotated formulas. A sequent,
denoted by Γ,∆,Σ, is a presequent which contains at most one annotated
formula. If a sequent contains an annotated formula then this annotated for-
mula is said to be in focus. A sequent is history-free if it does not contain an
annotated formula. Notation for sequents is as usual, i.e. Γ, ϕ denotes Γ∪{ϕ}
and is also used for annotations, i.e. H,Γ denotes H ∪{Γ}. The corresponding
formula of a sequent is the disjunction of the corresponding formulas of its
elements and the semantics of a sequent is given by its corresponding formula.
A sequent inside a formula denotes its corresponding formula.

A system is a set of inference rules and a derivation in a system is a possibly
infinite tree built according to the rules in that system where the nodes are
labelled with sequents (so they contain at most one annotated formula). The
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LT1− {aid, rep, RNH}+

id
Γ, ϕ, ϕ

RH
Γ, ψ,H Γ, X(ϕ RH,Γ ψ), ϕ,H

Γ, ϕ RH ψ

Fig. 2. System LT2.

sequent at the bottom of a rule is called conclusion and the sequents at the top
are called premises. The sequent at the root of a derivation is called endsequent
and the sequents at the leaves are called initial sequents. The conclusion of a
rule without premisses is also called axiom. A sequent is called axiomatic for
a system if it is an instance of an axiom in this system and it is irreducible for
a system if it is not an instance of the conclusion of any rule in this system.
A proof for the sequent Γ in some system is a finite derivation in that system
with the endsequent Γ and with all initial sequents axiomatic. We write S ` Γ
to denote that there is a proof for Γ in system S.

Sequent systems for LTL. System LT1 is shown in Figure 1. It turns out to
be complete for history-free sequents but not for arbitrary sequents. Also, the
RH-rule is not invertible. This is remedied in system LT2 shown in Figure 2.
The names id, aid, rep and foc respectively stand for identity, atomic identity,
repeat and focus. The N in RN is for Non-invertible. Systems in which sequents
are sets typically include a hidden contraction. The systems in this paper do
not: all rules carry the proviso that the active formula in the conclusion is not
an element of the context. For example

ϕ ∨ ψ, ϕ, ψ
ϕ ∨ ψ

is not an instance of the ∨-rule. In the X-rule, the conclusion is not allowed to
be axiomatic. XΓ is obtained from Γ by applying a next connective to every
element of Γ. Notice that, since sequents can contain at most one annotated
formula, the foc rule is not applicable to a sequent which already contains an
annotated formula.

Theorem 1 (Soundness)
(i) If LT1 ` Γ then |= Γ.
(ii) If LT2 ` Γ then |= Γ.

PROOF. Soundness of all rules besides rep and RH is easy to see: soundness
of RNH follows from soundness of RH . For rep note that the negation of the
corresponding formula is Γ∧((ϕ∧Γ∧. . . ) U (ψ∧Γ∧. . . )), and thus unsatisfiable:
because of the first conjunct each model of this formula satisfies Γ but because
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of the second conjunct it also satisfies Γ. This is a contradiction, thus there is
no such model. For soundness of RH we also argue by contradiction. Suppose
that the premises are valid and thus 1) |= Γ, ψ,H and 2) |= Γ, X(ϕ RH,Γ ψ), ϕ,H
but that 6|= Γ, ϕ RH ψ. Then there is a model π with π, 0 |= Γ∧(ϕ∧H) U (ψ∧H).
Hence, there is a k such that π, k |= ψ ∧H and for all j < k: π, j |= ϕ∧H, as
follows:

◦

Γ

(ϕ ∧H) U (ψ ∧H)

◦︸ ︷︷ ︸
ϕ ∧H

. . . ◦ ◦

ψ ∧H

. . . .

Thus, by 1) we have π, 0 |= ψ. Thus k > 0 and π, 0 |= ϕ ∧ H. But then
by 2) π, 0 |= X(ϕ RΓ,H ψ) and thus π, 1 |= ϕ RΓ,H ψ, which is equivalent to
(ψ ∨ H ∨ Γ) ∧ ((ϕ ∨ H ∨ Γ) ∨ X(ϕ RΓ,H ψ)). From the first conjunct together
with 1) we get π, 1 |= ψ and from the second conjunct together with 2) we get
π, 1 |= X(ϕ RΓ,H ψ).

This argument can now be iterated showing that for all i ≥ 0 we have π, i |= ψ.
But this contradicts the assumption that π, k |= ψ. 2

Completeness. It is easy to see that LT1 is not complete for arbitrary sequents:
a R{{a}} a is equivalent to (a∨a) R (a∨a) and thus valid and clearly provable in
LT2 but equally clearly not provable in LT1. We will prove completeness for LT2
via a more restricted system LT2’, which we define now. It proves statements
of the form Γ : l, where Γ is a sequent and l is a finite list which contains
all release formulas that occur in Γ. The rules of LT2’ are just like those of
LT2 and they simply pass on the list from the conclusion to all premises. The
exception is the foc-rule. We want to focus on the release formula that occurs
earliest in the list, so the rule is defined as follows:

foc
Γ, ϕ R∅ ψ : l1, l2, ϕ Rψ

Γ, ϕ Rψ : l1, ϕ Rψ, l2
no formula in Γ occurs in l1 .

This ensures that each release formula which keeps occuring in a branch will
be annotated eventually.

Definition 2 (closure) Let sf (ϕ) be the set of all subformulas of ϕ and their
negations. The closure cl(ϕ) is then defined as

sf (ϕ) ∪ { Xψ | ψ is a fixpoint formula in sf (ϕ)} .

The closure of a sequent is the union of the closures of its elements and the
closure of an annotated formula ϕRΓ1...Γnψ is defined as

cl(ϕRψ) ∪ cl(Γ1) ∪ · · · ∪ cl(Γn) .
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Clearly, the closure of a sequent is finite. Fix an arbitrary linear ordering of
formulas. We denote by l(Γ) the list of all release formulas in cl(Γ) ordered
according to that order.

Theorem 3 (Completeness)
(i) If Γ is history-free and |= Γ then LT1 ` Γ.
(ii) If |= Γ then LT2 ` Γ.
(iii) If |= Γ then LT2′ ` Γ : l(Γ).

PROOF. We just show (ii) since (i) is very similar and easier. Statement (iii)
implies (ii) since we can just drop all the lists. We show the contrapositive
of (iii). Assume LT2′ 6` Γ : l(Γ). Build a possibly infinite derivation with
the conclusion Γ : l(Γ) applying the rules of LT’ repeating the following ad
infinitum:

(1) apply id, ∧,∨, X as long as possible,
(2) apply foc if possible,
(3) apply U, R, RH as long as possible.

Notice that with this strategy only subsets of the closure of the endsequent
will enter the histories.

By assumption the above algorithm will not yield a proof, and thus there will
be either 1) a finite branch ending in a leaf to which no rule applies or 2)
an infinite branch. In both cases define a sequence π of sequents with length
|π| ≤ ω such that π(i) contains exactly those formulas and annotated formulas
which occur in some sequent along this branch between the i-th and (i+ 1)-th
application of the X-rule. In the second case this sequence is infinite and we
define the model π̃ as π̃(i) = {p | p ∈ π(i)}. In the first case this sequence is
finite, with π(n) its last element, and we define the model π̃ as before but with
π̃(i) = {a | a ∈ π(n)} for i > n. It is a countermodel for Γ since Γ ⊆ π(0) and
we prove the following two claims:

Claim 1 For all i < |π| and all formulas ϕ we have ϕ ∈ π(i) ⇒ π̃, i 6|= ϕ.

Claim 2 For all i < |π| and all annotated formulas ϕH we have ϕH ∈ π(i) ⇒
π̃, i 6|= ϕH .

We prove the first claim by induction on the structure of ϕ. The claim is
true by definition for propositions, it is true for negated proposition since by
assumption no element of π can be axiomatic, and it follows easily from the
induction hypothesis for conjunctions and disjunctions.

Suppose Xϕ ∈ π(i). If π is finite and π(n) is its last element, then no next-
formula can occur in π(n), and thus i < n. But then ϕ ∈ π(i + 1) follows
by the X-rule, π̃, i + 1 6|= ϕ follows from the induction hypothesis and thus
π̃, i 6|= Xϕ. The same holds for the case where π is infinite.

Suppose that ϕ Uψ ∈ π(i). Assume that there is a k ≥ i s.t. ϕ ∈ π(k).
Take the least such k. Then for all i ≤ j ≤ k we have ψ ∈ π(j). Thus by
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induction hypothesis for all i ≤ j ≤ k we have π, j 6|= ψ and π̃, k 6|= ϕ and
thus π̃, i 6|= ϕ Uψ. Now assume that there is no such k, i.e. that for all k ≥ i
we have ϕ /∈ π(k). Then for all k ≥ i we have ψ ∈ π(k) and thus by induction
hypothesis π̃, k 6|= ψ and thus π̃, i 6|= ϕ Uψ.

Suppose ϕ Rψ ∈ π(i). First we show that then there is a k ≥ i such that
ψ ∈ π(k). So assume otherwise, i.e. that for all k ≥ i we have ψ /∈ π(k). Thus,
whenever a R or RH rule is applied to the formula ϕ Rψ or the annotated
formula ϕ RH ψ, then our branch is along the premise to the right. Thus for
all k ≥ i we have either ϕ Rψ ∈ π(k) or for some annotation H we have
ϕ RH ψ ∈ π(k). Also, this branch cannot end in an irreducible leaf and thus
has to be infinite. Notice that a formula cannot be annotated forever: since
the RH-rule always adds the context to the history, and there are only finitely
many subsets of the closure of the endsequent, some sequent along this branch
would eventually be axiomatic:

Γ, ψ,H ∨ Γ Γ, X(ϕ RH,Γ ψ), ϕ,H ∨ Γ
RH

Γ, ϕ RH,Γ ψ

Thus, by our strategy and the foc-rule, every release formula which occurs in
every π(k) for k ≥ i is eventually annotated and later unannotated. Thus,
we in particular have ϕ RH ψ ∈ π(j) for some annotation H and some j ≥ i.
The only way to drop the annotation is by taking the branch along the left
premise of the RH-rule. Thus there is a k ≥ i such that ψ ∈ π(k). We take the
least such k and thus for all j with i ≤ j < k we have ϕ ∈ π(j). By induction
hypothesis, π̃(k) 6|= ψ and π̃(j) 6|= ϕ for all such j. But then π̃, i 6|= ϕ Rψ.

To prove the second claim, suppose ϕ RH ψ ∈ π(i). Similarly to the proof of
the first claim we know that there is a k ≥ i such that ψ ∨H ∈ π(k). We take
the least such k and thus for all j with i ≤ j < k we have ϕ ∨H ∈ π(j). By
claim 1, π̃(k) 6|= ψ∨H and π̃(j) 6|= ϕ∨H for all such j. But then π̃, i 6|= ϕ RH ψ.
The case where we have an annotated release formula prefixed with a next is
similar. 2

Clearly, completeness of system LT2 gives us admissibility of any sound rule,
in particular we get the following corollary.

Corollary 4 (Weakening- and cut-admissibility) The rules weakening and cut

Γ
w

Γ, ϕ and

Γ, ϕ ∆, ϕ
cut

Γ,∆

are admissible for system LT2.

Completeness also gives us invertibility of all rules, we just need to check that
the validity of the conclusion implies the validity of all premisses:

Corollary 5 (Invertibility) All rules of system LT2 are invertible.
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3 Computational Tree Logic, CTL

Formulas. The set of (CTL) formulas is given by the grammar

ϕ ::= p | p | ϕ∨ϕ | ϕ∧ϕ | EXϕ | AXϕ | E(ϕ Uϕ) | E(ϕ Rϕ) | A(ϕ Uϕ) | A(ϕ Rϕ) .

In the following, Q will be an element of {E, A}, which are the existential
and universal path quantifiers, respectively. Formulas with either QX as main
connective are called next-formulas. The negation ϕ of a formula ϕ is defined
as usual by the De Morgan laws, in particular Aϕ = Eϕ and Eϕ = Aϕ where ϕ
is a formula in the union of the languages of CTL and LTL.

Models. A model, denoted by M, consists of a set of states S, a total binary
transition relation R on S and a valuation V which assigns to each state a
set of propositions. The relation |= for CTL formulas is defined as usual on
the boolean connectives and on the temporal connectives as follows, where s
ranges over states in M:

M, s |= EXϕ ⇐⇒ ∃t with sRt and M, t |= ϕ

M, s |= AXϕ ⇐⇒ ∀t if sRt then M, t |= ϕ

M, s0 |= E(ϕ Uψ) ⇐⇒ ∃ infinite path s0s1s2 . . .
∃i ≥ 0 si |= ψ and ∀ 0 ≤ j < i sj |= ϕ

M, s0 |= A(ϕ Uψ) ⇐⇒ ∀ infinite paths s0s1s2 . . .
∃i ≥ 0 si |= ψ and ∀ 0 ≤ j < i sj |= ϕ

M, s0 |= E(ϕ Rψ) ⇐⇒ ∃ infinite path s0s1s2 . . .
∀i ≥ 0 si |= ψ or ∃ 0 ≤ j < i sj |= ϕ

M, s0 |= A(ϕ Rψ) ⇐⇒ ∀ infinite paths s0s1s2 . . .
∀i ≥ 0 si |= ψ or ∃ 0 ≤ j < i sj |= ϕ

M |= ϕ ⇐⇒ ∀sM, s |= ϕ .

We write s |= ϕ if M is clear from the context. A formula ϕ is valid, denoted
by |= ϕ, if ∀M∀sM, s |= ϕ and it is satisfiable if ∃M∃sM, s |= ϕ.

Sequents and annotated formulas. Annotated formulas are given by the gram-
mar

ϕH ::= E(ϕ RH ϕ) | A(ϕ RH ϕ) | EX(E(ϕ RH ϕ)) | AX(A(ϕ RH ϕ)) ,

where the annotation H is a finite set of finite sets of formulas. The corre-
sponding formula of an annotated formula is obtained as in the case for LTL
by replacing

ϕ RH ψ by (ϕ ∨H) R (ψ ∨H) .

A sequent system for CTL. The sequent system for CTL is shown in Figure 3.
In the X-rule an α denotes a possibly annotated formula and the case where
m = 0 is allowed. Also, EXΓ is obtained from Γ by applying a EX to every

10



aid
Γ, a, a

∨
Γ, ϕ, ψ

Γ, ϕ ∨ ψ
∧

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

QU
Γ, ϕ, ψ Γ, QX(Q(ϕ Uψ)), ψ

Γ, Q(ϕ Uψ)
QR

Γ, ψ Γ, QX(Q(ϕ Rψ)), ϕ

Γ, Q(ϕ Rψ)

X
αi,Γ

AXα1, . . . , AXαm, EXΓ, a1, . . . , an

rep
Γ, Q(ϕ RH,Γ ψ)

foc
Γ, Q(ϕ R∅ ψ)

Γ, Q(ϕ Rψ)

QRH
Γ, ψ Γ, QX(Q(ϕ RH,Γ ψ)), ϕ

Γ, Q(ϕ RH ψ)

Fig. 3. System CT.

element of Γ.

Theorem 6 (Soundness)
(i) The rep-rule is sound.
(ii) The QRH-rule is sound.
(iii) If CT ` Γ then |= Γ.

PROOF. The proof is similar to the corresponding one for LTL. Let us see
(ii) in detail. Let Q = E, the proof for the dual case is similar. We argue by
contradiction. Suppose that the premises of the RH-rule are valid and thus 1)
|= Γ, ψ and 2) |= Γ, EX(E(ϕ RH,Γ ψ)), ϕ but that 6|= Γ, E(ϕ RH ψ). Then there is
a model M with a state s with s |= Γ and s |= A((ϕ ∧H) U (ψ ∧H)). Hence
for each path π starting from s there is a k such that π(k) |= ψ ∧H and for
all j < k: π(j) |= ϕ ∧H. By 1) we thus have s |= ψ.

Thus we have for each such path that k > 0 and that s |= ϕ. But then
by 2) s |= EX(E(ϕ RΓ,H ψ)) and thus there is a successor t of s such that
t |= E(ϕ RΓ,H ψ), which is equivalent to

(ψ ∨H ∨ Γ) ∧ (ϕ ∨H ∨ Γ ∨ EXE(ϕ RΓ,H ψ)) .

From the first conjunct together with 1) we get t |= ψ and from the second
conjunct together with 2) we get t |= EXE(ϕ RΓ,H ψ).

This argument can now be iterated to build an infinite path π starting from s
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such that for all i ≥ 0 we have π(i) |= ψ. But this contradicts the assumption
that for all paths π from s there is a k such that π(k) |= ψ. 2

Completeness. Like for LTL, we prove completeness for a different system
CT’, which proves statements of the form Γ : l, where Γ is a sequent and l
is a finite list of release formulas. The rules of CT’ are just like those of CT
and they simply pass on the list from the conclusion to all premises. There
are two exceptions. The first exception is the foc-rule, which is defined as in
the previous section:

foc
Γ, Q(ϕ R∅ ψ) : l1, l2, Q(ϕ Rψ)

Γ, Q(ϕ Rψ) : l1, Q(ϕ Rψ), l2
no formula in Γ occurs in l1 .

The second exception is the X-rule. Since it is not invertible we have to keep
track of all possible premises:

X
α1,Γ : l . . . αm,Γ : l

AXα1, . . . , AXαm, EXΓ, a1, . . . , an : l
.

A node in a derivation is called cyclic if there is another node on the path to
the root which carries the same sequent and is the conclusion of an X-rule. The
X-rule applies only if its conclusion is not cyclic. Notice that the applicability
of the X-rule is only well-defined for bottom-up proof search, and this is the
only way we will use it. Notice also that the branching in this X-rule is very
different from the branching of the other rules: the conclusion is provable if
one of the premisses is provable. To capture that, we now inductively define
when a node in a finite derivation in CT’ is successful. Axiomatic leaves are
successful. For the X-rule the conclusion is successful iff there is a successful
premise and for all other rules the conclusion is successful iff all premises are
successful. For CT’ we also redefine the notion of proof: a proof in CT’ is
a finite derivation with a successful endsequent. The closure of a sequent is
defined in a similar way to the one for LTL-formulas.

Theorem 7 (Completeness)
(i) For history-free sequents Γ if |= Γ then CT ` Γ.
(ii) For history-free sequents Γ if |= Γ then CT′ ` Γ : l(Γ).

PROOF. Statement (ii) implies (i) since we can just drop all the lists and
for each application of X we can drop all premises except for one successful
premise. We prove the contrapositive of (ii). Assume CT′ 6` Γ : l(Γ). Build a
derivation with the conclusion Γ : l(Γ) applying the rules of CT’ repeating the
following until no rule is applicable:

(1) apply aid,rep, ∧,∨, X as long as possible,
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(2) apply foc if possible,
(3) apply QU, QR, QRH as long as possible.

Since there are only finitely many expressions Γ : l which can occur in the
derivation and because of the proviso on the X-rule this yields a finite deriva-
tion. By assumption this derivation is not a proof and thus its endsequent is
not successful. By construction each non-axiomatic leaf is either irreducible or
cyclic.

We now construct a countermodel. First, starting from the endsequent, recur-
sively extract a subtree from the given derivation: for each rule instance which
is not an instance of X drop all premises except for one unsuccessful premise.
This unsuccessful premise exists because the endsequent is unsuccessful. The
resulting subtree only branches for instances of X and only contains unsuccess-
ful nodes. Second, collapse all nodes between two adjacent instances of X and
mark the resulting node with the union of all the sequents from these nodes.
From this resulting tree we now define a Kripke model M = (S,R, V ). Let S
be the set of nodes of the tree, let V (s) = {p | p ∈ s}, and let sRt iff 1) t is a
child node of s or 2) s is a leaf and t is a child node of a node which caused s
to be cyclic or 3) s contains no formula of the form AXϕ and t = s. It is clearly
total and it is a countermodel for Γ since Γ is a subset of the root of M and
we prove the following claim:

Claim For all s ∈ S and all formulas ϕ we have ϕ ∈ s ⇒ M, s 6|= ϕ.

We prove this by induction on the structure of ϕ. The claim is true by defini-
tion for propositions, it is true for negated propositions since by assumption
no element of S can be axiomatic, and it follows easily from the induction
hypothesis for conjunctions and disjunctions.

Suppose EXϕ ∈ s. But then for all t with sRt we have ϕ ∈ t by the X-rule,
t 6|= ϕ follows from the induction hypothesis and thus s 6|= EXϕ. The argument
is similar for AXϕ.

Suppose that E(ϕ Uψ) ∈ s. Take an arbitrary infinite path π starting from s.
Assume that there is a k such that ϕ ∈ π(k). Then for the least such k and
for all j ≤ k we have ψ ∈ π(j). Thus by induction hypothesis for all j ≤ k we
have π(j) 6|= ψ and we have π(k) 6|= ϕ. Now assume that there is no such k,
namely that for all k we have ϕ /∈ π(k). Then for all k we have ψ ∈ π(k) and
thus by induction hypothesis π(k) 6|= ψ. For each path one of these two cases
is true and thus s 6|= E(ϕ Uψ). The case for A(ϕ Uψ) is similar.

Suppose E(ϕ Rψ) ∈ s. First we show that for each path π starting from s
there is a k such that ψ ∈ π(k). So assume otherwise, namely that there
is such a path π such that for all k we have ψ /∈ π(k). Thus, whenever a
ER or ERH rule is applied to the formula E(ϕ Rψ) or the annotated formula
E(ϕ RH ψ), then the premise we chose to keep is the premise to the right.
Because of that and because the X-rule keeps this possibly annotated formula
from conclusion to all premises, for all k we have either E(ϕ Rψ) ∈ π(k) or
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for some annotation H we have E(ϕ RH ψ) ∈ π(k). Notice that a formula can
not be annotated forever since the ERH-rule always adds one of the finitely
many subsets of the closure of the endsequent to the history and then some
element of π would be successful by rep. Thus by our strategy and the foc-rule
every release formula which occurs in every element of π will eventually be
annotated and later unannotated. Thus we in particular have E(ϕ RH ψ) ∈ π(j)
for some annotation H and some j. The only way to drop the annotation is
taking the branch along the left premise of the ERH-rule. Thus there is a k
such that ψ ∈ π(k). We take the least such k and thus for each path π and
the corresponding k and for all j with j < k we have ϕ ∈ π(j). By induction
hypothesis, π(k) 6|= ψ and π(j) 6|= ϕ for all such j. But then s 6|= E(ϕ Rψ). The
argument for A(ϕ Rψ) is similar. 2

4 Discussion

We have seen sound and complete cut-free sequent systems for LTL and CTL.
It seems a safe bet that epistemic logics with common knowledge [2] and also
PDL [3] can receive a similar treatment. Focus games have already been defined
for PDL with converse [11]. Common knowledge is a fairly simple fixpoint and
should be similar to CTL. More interesting are CTL∗ and, of course, the full
modal µ-calculus.

Another interesting problem is syntactic cut elimination. This is quite chal-
lenging: even weakening admissibility is problematic syntactically. Typically,
weakening is easily shown admissible by a trivial induction on proof depth
which simply adds a formula to every sequent in a proof and checks that this
does not break any rule instance. However, in system LT1 for example, this
does not work. Weakening does not permute over the RNH-rule. Permuting
weakening up would require a rule ? which is not even sound:

Γ, ψ Γ, X(ϕ RH,Γ ψ), ϕ
RNH

Γ, ϕ RH ψ
w

Γ, ϕ RH ψ, χ

;

Γ, ψ
w

Γ, ψ, χ

Γ, X(ϕ RH,Γ ψ), ϕ
?

Γ, X(ϕ RH,(Γ,χ) ψ), ϕ, χ
RNH

Γ, ϕ RH ψ, χ

.

This problem is to be expected. The RNH-rule incorporates an induction prin-
ciple and the fact that a certain statement is provable by induction does not
imply that a weaker statement is also provable by induction. Nevertheless, for
LT2 weakening is admissible, and it would be interesting to have a syntactic
proof of that.

When this work was completed, we became aware of the work by Gaintzarain
et al., who prove the completeness of a cut-free sequent system for LTL in [4]
which is called FC. In contrast to our systems, in this system formulas get
arbitrarily larger during a root-first, bottom-up proof-search. So the system
FC is far from having a reasonable subformula property. The completeness
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proof for FC goes along the lines of [13] and is arguably not as simple as the
proof that we presented.
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