Syntactic Cut Elimination for an Infinitary System for Common Knowledge

> Kai Brünnler (joint work with Thomas Studer)

Outline

The Logic of Common Knowledge The language A Hilbert System

2 A Gentzen-style Sequent System The Problem for Cut Elimination

3 A Deep Sequent System

Some Background on Deep Inference Deep Sequents A Deep Sequent System Embedding the Hilbert System Cut Elimination

The Logic of Common Knowledge

Formulas

 $A ::= p \mid \bar{p} \mid (A \lor A) \mid (A \land A) \mid \diamondsuit_i A \mid \Box_i A \mid \circledast A \mid \blacksquare A$

The Logic of Common Knowledge

Formulas

$$A ::= p \mid \bar{p} \mid (A \lor A) \mid (A \land A) \mid \diamondsuit_i A \mid \Box_i A \mid \circledast A \mid \blacksquare A$$

Everybody knows

$$\Box A = \Box_1 A \land \ldots \land \Box_h A \quad \text{and} \quad \Diamond A = \Diamond_1 A \lor \ldots \lor \Diamond_h A.$$

The Logic of Common Knowledge

Formulas

$$A ::= p \mid \bar{p} \mid (A \lor A) \mid (A \land A) \mid \diamondsuit_i A \mid \Box_i A \mid \circledast A \mid \blacksquare A$$

Everybody knows

$$\Box A = \Box_1 A \land \ldots \land \Box_h A \quad \text{and} \quad \Diamond A = \Diamond_1 A \lor \ldots \lor \Diamond_h A.$$

Notation

$$\Box^n A = \underbrace{\Box \dots \Box}_{n-\text{times}} A$$

A Hilbert System

System H_C

$$(K) \qquad \Box_{i}A \land \Box_{i}(A \supset B) \supset \Box_{i}B$$

$$(CCL) \qquad \circledast A \supset (\Box A \land \Box \divideontimes A)$$

$$(IND) \qquad \underline{B \supset (\Box A \land \Box B)} \qquad (NEC) \qquad \underline{A} \qquad \\ \Box_{i}A \qquad \\ (MP) \qquad \underline{A \quad A \supset B} \qquad \\ B \supset \And A$$

An Infinitary Sequent Calculus

An Infinitary Sequent Calculus

An Infinitary Sequent Calculus

 \sim

Deep Inference in General

• Schütte 1950

Deep Inference in General

- Schütte 1950
- Guglielmi 2001

Deep Inference in General

- Schütte 1950
- Guglielmi 2001

Deep Sequents in Particular

• Kashima 1994, Tanaka 2003

Deep Inference in General

- Schütte 1950
- Guglielmi 2001

- Kashima 1994, Tanaka 2003
- Brünnler 2006

Deep Inference in General

- Schütte 1950
- Guglielmi 2001

- Kashima 1994, Tanaka 2003
- Brünnler 2006
- Kretz and Studer 2006

Deep Inference in General

- Schütte 1950
- Guglielmi 2001

- Kashima 1994, Tanaka 2003
- Brünnler 2006
- Kretz and Studer 2006
- Poggiolesi (PhD student in Florence)

Deep Sequents

Definition

A (deep) sequent is a finite multiset of formulas and boxed sequents. A boxed sequent is an expression $[\Gamma]_i$ where Γ is a sequent and $1 \le i \le h$.

Notation

As usual, given two sequents Γ and Δ , the comma in the expression Γ, Δ is multiset union. As usual, we write sequents *without curly braces*.

Deep Sequents

Definition

A (deep) sequent is a finite multiset of formulas and boxed sequents. A boxed sequent is an expression $[\Gamma]_i$ where Γ is a sequent and $1 \le i \le h$.

Notation

As usual, given two sequents Γ and Δ , the comma in the expression Γ, Δ is multiset union. As usual, we write sequents *without curly braces*. So we write

 $A, [[B]_1, C, [D]_2]_3$

instead of

 $\{A, [\{[\{B\}]_1, C, [\{D\}]_2\}]_3\}$

Deep Sequents

Deep sequents have a tree structure, for example

 $A, [[B]_1, C, [D]_2]_3$

has:

Fact

A sequent is always of the form

$$A_1,\ldots,A_m,[\Delta_1]_{i_1},\ldots,[\Delta_n]_{i_n}$$
 ,

where the i_j range from 1 to h.

Definition

The *corresponding formula* of the above sequent is \perp if m = n = 0 and otherwise

$$A_1 \lor \cdots \lor A_m \lor \Box_{i_1} D_1 \lor \cdots \lor \Box_{i_n} D_n$$
 ,

where $D_1 \dots D_n$ are the corresponding formulas of the sequents $\Delta_1 \dots \Delta_n$.

Sequent Contexts

Definition

A *context* is a sequent with exactly one occurrence of the symbol $\{\ \}$, the *hole*, which does not occur inside formulas. Such contexts are denoted by $\Gamma\{\ \}$, $\Delta\{\ \}$, and so on. The hole is also called the *empty context*. The sequent $\Gamma\{\Delta\}$ is obtained by replacing $\{\ \}$ inside $\Gamma\{\ \}$ by Δ . For example, if

$$\mathsf{F}\{\ \} = \mathsf{A}, [[B]_1, \{\ \}]_3 \qquad \text{and} \qquad \Delta = \mathsf{C}, [D]_2$$

then

$$\Gamma\{\Delta\} = A, [[B]_1, C, [D]_2]_3$$

Sequent Contexts

- 1) The symbol { } is a *context*, it is the *empty context*.
- 2) If Δ is a sequent and $\Gamma\{ \}$ is a context then $\Delta, \Gamma\{ \}$ is a *context*. 3) If $\Gamma\{ \}$ is a context then $[\Gamma\{ \}]$ is a *context*.

For a context $\Gamma\{\ \}$ and a sequent Δ , $\Gamma\{\Delta\}$ is defined as follows: 1) If $\Gamma\{\ \} = \{\ \}$ then $\Gamma\{\Delta\} = \Delta$. 2) If $\Gamma\{\ \} = \Sigma, \Lambda\{\ \}$ then $\Gamma\{\Delta\} = \Sigma, \Lambda\{\Delta\}$. 3) If $\Gamma\{\ \} = [\Lambda\{\ \}]$ then $\Gamma\{\Delta\} = [\Lambda\{\Delta\}]$.

A Deep Sequent System

$$\Gamma\{p, \overline{p}\} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \lor B\}}$$

$$\Box_{i} \frac{\Gamma\{[A]_{i}\}}{\Gamma\{\Box_{i}A\}} \quad \diamondsuit_{i} \frac{\Gamma\{\diamondsuit_{i}A, [\Delta, A]_{i}\}}{\Gamma\{\diamondsuit_{i}A, [\Delta]_{i}\}}$$

$$\approx \frac{\Gamma\{\Box^{k}A\} \text{ for all } k \ge 1}{\Gamma\{\circledast A\}} \quad \circledast \frac{\Gamma\{\circledast A, \diamondsuit^{k}A\}}{\Gamma\{\circledast A\}}$$

Admissible Rules

$$\operatorname{nec} \frac{\Gamma}{[\Gamma]_{i}} \quad \operatorname{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \quad \operatorname{ctr} \frac{\Gamma\{\Delta, \Delta\}}{\Gamma\{\Delta\}}$$
$$\operatorname{cut} \frac{\Gamma\{A\}}{\Gamma\{\emptyset\}}$$

Derivations and proofs.

- derivation in a system S: a well-founded tree whose nodes are labelled with sequents and which is built according to the inference rules from S
- conclusion of a derivation: the sequent at the root
- the premises of a derivation: the sequents at the leaves
- proof of a sequent Γ in a system: a derivation in this system with conclusion Γ where all leaves are axioms.
- $S \vdash \Gamma$: there is a proof of Γ in system S.

Formula rank

$$\begin{aligned} \mathsf{rk}(p) &= \mathsf{rk}(\bar{p}) = 0 \\ \mathsf{rk}(A \land B) &= \mathsf{rk}(A \lor B) = \mathsf{max}(\mathsf{rk}(A), \mathsf{rk}(B)) + 1 \\ \mathsf{rk}(\Box_i A) &= \mathsf{rk}(\diamondsuit_i A) = \mathsf{rk}(A) + 1 \\ \mathsf{rk}(\textcircled{B} A) &= \mathsf{rk}(\textcircled{A}) = \omega + \mathsf{rk}(A) \end{aligned}$$

Formula rank

$$rk(p) = rk(\bar{p}) = 0$$

$$rk(A \land B) = rk(A \lor B) = max(rk(A), rk(B)) + 1$$

$$rk(\Box_i A) = rk(\diamondsuit_i A) = rk(A) + 1$$

$$rk(\circledast A) = rk(\circledast A) = \omega + rk(A)$$

Lemma (Some properties of the rank) (i) $rk(A) = rk(\overline{A})$, (ii) there are $m, n < \omega$ such that $rk(A) = \omega \cdot m + n$, (iii) for all $k < \omega$ we have $rk(\Box^k A) < rk(\mathbb{B}A)$.

Cut rank

- cut rank of an instance of cut: rank of its cut formula
- $\operatorname{cut}_{\gamma}$: cut with at most rank γ
- $\operatorname{cut}_{<\gamma}$: cut with a rank strictly smaller than γ .
- S |^α/_γ Γ: there is a proof of Γ in system S + cut_{<γ} with depth bounded by α.

Admissibility and invertibility.

- An inference rule ρ with premises Γ₁, Γ₂... and conclusion Δ is *depth- and cut-rank-preserving admissible* for a system S if whenever S |_γ Γ_i for each premise Γ_i then S |_γ Δ.
- For each rule ρ there is its *inverse*, denoted by ρ
 , which has the conclusion of ρ as its only premise and any premise of ρ as its conclusion.
- An inference rule ρ is depth- and cut-rank-preserving invertible for a system S if γ̄ is depth- and cut-rank preserving admissible for S.

Lemma (Admissibility of the structural rules)

For system D_C the following hold: (i) The necessitation, weakening and contraction rules are depthand cut-rank-preserving admissible. (ii) All rules are depth- and cut-rank-preserving invertible. Lemma (Admissibility of the structural rules) For system D_C the following hold: (i) The necessitation, weakening and contraction rules are depthand cut-rank-preserving admissible. (ii) All rules are depth- and cut-rank-preserving invertible.

Lemma (Admissibility of the general identity axiom) For all contexts $\Gamma\{ \}$ and all formulas A we have $D_{C} \models \frac{2 \cdot rk(A)}{0} \Gamma\{A, \overline{A}\}.$

Theorem (Embedding the Hilbert system) If $H_C \vdash A$ then there are $m, n < \omega$ such that $D_C \mid_{\omega \cdot n}^{\omega \cdot m} A$. Proof

$$(\text{IND}) \frac{B \supset (\Box A \land \Box B)}{B \supset \circledast A}$$

by induction hypothesis $D_C \mid_{\overline{\omega} \cdot m_1}^{\omega \cdot m_1} B \supset (\Box A \land \Box B)$ by invertibility $D_C \mid_{\overline{\omega} \cdot m_1}^{\omega \cdot m_1} \overline{B}, \Box B$ and $D_C \mid_{\overline{\omega} \cdot m_1}^{\omega \cdot m_1} \overline{B}, \Box A$. by induction on k: for all $k \ge 1$ there is an $m_{2k} < \omega$ such that $D_C \mid_{\overline{\omega} \cdot m_1}^{\omega \cdot m_1 + m_{2k}} \overline{B}, \Box^k A$

Proof (continued)

$$\begin{array}{c} & \overline{B}, \Box A \quad \dots \quad \overline{B}, \Box^{k} A \quad \dots \\ & & \underbrace{\overline{B}, \circledast A}_{\substack{\vee \\ = \frac{\overline{B}, \circledast A}{\overline{B} \lor \circledast A}}}_{B \supset \circledast A}
\end{array}$$

Veblen Function

The binary Veblen function φ is generated inductively as follows:

- $\ \, {\bf 0} \ \, \varphi_{0}\beta:=\omega^{\beta},$
- 2 if $\alpha > 0$, then $\varphi_{\alpha}\beta$ denotes the β th common fixpoint of the functions $\lambda \xi. \varphi_{\gamma}\xi$ for $\gamma < \alpha$.

Lemma (Reduction Lemma) If there is a proof

with π_1 and π_2 in $\mathsf{D}_{\mathsf{C}} + \mathsf{cut}_{<\gamma}$ then $\lfloor \frac{|\pi_1| \# |\pi_2|}{\gamma} \mathsf{\Gamma}\{\emptyset\}$.

(passive):

(passive):

 $(\land - \lor)$:

 $(\land - \lor)$:

 \sim

$(\Box_i - \diamondsuit_i)$:

$(\Box_i - \diamondsuit_i)$:

 \sim

(* - *):

(* - *):

 \sim

First Elimination Lemma If $\frac{\alpha}{\gamma+1} \Gamma$ then $\frac{2^{\alpha}}{\gamma} \Gamma$.

First Elimination Lemma If $\frac{\alpha}{\gamma+1} \Gamma$ then $\frac{2^{\alpha}}{\gamma} \Gamma$.

Second Elimination Lemma If $\frac{\alpha}{\beta+\omega^{\gamma}}$ Γ then $\frac{\varphi_{\gamma}\alpha}{\beta}$ Γ .

First Elimination Lemma If $\frac{\alpha}{\gamma+1} \Gamma$ then $\frac{2^{\alpha}}{\gamma} \Gamma$.

Second Elimination Lemma If $\frac{\alpha}{\beta+\omega^{\gamma}}$ Γ then $\frac{\varphi_{\gamma}\alpha}{\beta}$ Γ .

Theorem (Cut Elimination) If A is a valid formula then $\left|\frac{\varphi_2 0}{0}\right| A$.

Future work

- Extend the result to Alberucci/Jäger's system
- Extend the result to S5-based common knowledge
- Extend the result to the μ -calculus
- Find lower bounds
- Do syntactic cut elimination in a finitary system