
The Problem of Cut Elimination
in Modal Predicate Logic

Kai Brünnler
Universität Bern

Modalities and Predicates

Domain

Modalities and Predicates

Domain

“Constant Domains”

Modalities and Predicates

“Varying Domains”

The Barcan Formula

∀x2A↔ 2∀xA

valid not valid
(neither direction)

The Barcan Formula

∀x2A↔ 2∀xA
valid not valid

(neither direction)

The Naive Proof System

proof system for predicate logic

+ proof system for modal logic

= constant domains? varying domains?

The Naive Proof System

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ, ∀xA
Γ,A[x := u]

∃ −−−−−−−−−−−−−
Γ,∃xA

Γ,A
2 −−−−−−−−−−−−

3Γ,2A,Σ

Neither Varying nor Constant Domains...

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

Neither Varying nor Constant Domains...

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Question
What goes wrong in the naive system?

The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Question
What goes wrong in the naive system?

What goes wrong in the naive system?

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u], ∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−−−

A[x := u], ∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−−

2A[x := u] ,3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−−

∀x2A ,3∃xĀ
∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−−−

A[x := u], ∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−−

2A[x := u] ,3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−−

∀x2A ,3∃xĀ
∨ −−−−−−−−−−−−−−−−
∀x2A ∨3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

It’s not so clear how to solve our problem in the sequent system.
Let’s look at a Hilbert system, where it is easily solved.

A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y]

A
Gen −−−−
∀xA

A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y] not valid for varying domains!

A
Gen −−−−
∀xA

A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀y(∀xA→ A[x := y]) valid for varying domains

A
Gen −−−−
∀xA

A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A↔∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀y(∀xA→ A[x := y]) valid for varying domains

A
Gen −−−−
∀xA

∀x∀yA↔ ∀y∀xA

The Problem, again

Up to now was folklore, see for example the book ”First-Order
Modal Logic” by Fitting and Mendelsohn.

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question
Can we get it in the same way we just got the Hilbert-system?

The Problem, again

Up to now was folklore, see for example the book ”First-Order
Modal Logic” by Fitting and Mendelsohn.

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question
Can we get it in the same way we just got the Hilbert-system?

The Problem, again

Up to now was folklore, see for example the book ”First-Order
Modal Logic” by Fitting and Mendelsohn.

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question
Can we get it in the same way we just got the Hilbert-system?

How to weaken this system?

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ, ∀xA
Γ,A[x := u]

∃ −−−−−−−−−−−−−
Γ,∃xA

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x is not

free in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x is not

free in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x is not

free in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x is not

free in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x is not

free in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”

