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The Naive Proof System

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ, ∀xA
Γ,A[x := u]

∃ −−−−−−−−−−−−−
Γ,∃xA

Γ,A
2 −−−−−−−−−−−−

3Γ,2A,Σ



Neither Varying nor Constant Domains...

Ā[x := u],A[x := z ]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
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= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA



Neither Varying nor Constant Domains...
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∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
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Ā[x := u], A[x := z ]
∀ −−−−−−−−−−−−−−−−−−−−−−−−
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It’s not so clear how to solve our problem in the sequent system.
Let’s look at a Hilbert system, where it is easily solved.



A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y ]

A
Gen −−−−
∀xA
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A Hilbert System
All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A↔∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀y(∀xA→ A[x := y ]) valid for varying domains

A
Gen −−−−
∀xA

∀x∀yA↔ ∀y∀xA
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Up to now was folklore, see for example the book ”First-Order
Modal Logic” by Fitting and Mendelsohn.

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y ].

Question
Can we get it in the same way we just got the Hilbert-system?
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How to weaken this system?

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ, ∀xA
Γ,A[x := u]

∃ −−−−−−−−−−−−−
Γ,∃xA



Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [ ].

Idea
∀x [ ] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G ]]
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A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}
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Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}



A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := u]}
∃1 −−−−−−−−−−−−−−− where u is not

free in premiseΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}



A Nested Sequent System

Γ{a, ā}
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• has syntactic cut-elimination

• easily captures empty domains

• has the ”free variable property”
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