The Problem of Cut Elimination in Modal Predicate Logic

Kai Brünnler Universität Bern

Modalities and Predicates

Modalities and Predicates

"Constant Domains"

Modalities and Predicates

"Varying Domains"

The Barcan Formula

The Barcan Formula

The Naive Proof System

proof system for predicate logic

+ proof system for modal logic

= constant domains? varying domains?

The Naive Proof System

$$\Gamma, a, \overline{a} \qquad \wedge \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \qquad \operatorname{ctr} \frac{\Gamma, A, A}{\Gamma, A}$$

$$\forall \frac{\Gamma, A[x := u]}{\Gamma, \forall xA} \underset{\text{in conclusion}}{\text{n tot free}} \exists \frac{\Gamma, A[x := u]}{\Gamma, \exists xA}$$

$$\Box \frac{\Gamma, A}{\Diamond \Gamma, \Box A, \Sigma}$$

Neither Varying nor Constant Domains...

$$\forall \frac{\bar{A}[x := u], A[x := z]}{\bar{A}[x := u], \forall xA}$$
$$\exists \frac{\bar{A}[x := u], \forall xA}{\bar{\forall}\bar{A}[x := u], \Box \forall xA}$$
$$\forall \frac{\bar{\exists}x \Diamond \bar{A}, \Box \forall xA}{\bar{\exists}x \Diamond \bar{A} \lor \Box \forall xA}$$
$$= \frac{\forall x \Box A \to \Box \forall xA}{\forall x \Box A \to \Box \forall xA}$$

Neither Varying nor Constant Domains...

$$\forall \frac{\bar{A}[x := u], A[x := z]}{\bar{A}[x := u], \forall xA}$$
$$\exists \frac{\bar{A}[x := u], \forall xA}{\bar{\nabla}\bar{A}[x := u], \Box \forall xA}$$
$$\forall \frac{\bar{A}[x := u], \Box \forall xA}{\bar{A} \times \bar{\Delta} \times \Box \forall xA}$$
$$= \frac{\bar{A}[x \otimes \bar{A} \vee \Box \forall xA}{\bar{A} \times \bar{\Delta} \vee \Box \forall xA}$$

$$\exists \frac{A[x := u], \bar{A}[x := u]}{A[x := u], \exists x \bar{A}}$$

$$\forall \frac{A[x := u], \exists x \bar{A}}{\Box A[x := u], \Diamond \exists x \bar{A}}$$

$$\forall \frac{\Box A[x := u], \Diamond \exists x \bar{A}}{\forall x \Box A, \Diamond \exists x \bar{A}}$$

$$= \frac{\forall x \Box A, \Diamond \exists x \bar{A}}{\forall x \Box A \leftarrow \Box \forall x A}$$

More Domain Types

More Domain Types

More Domain Types

The Problem

Problem

Find a systematic cut-free axiomatisation of the four modal predicate logics.

Question What goes wrong in the naive system?

The Problem

Problem

Find a systematic cut-free axiomatisation of the four modal predicate logics.

Question

$$\forall \frac{\bar{A}[x := u], A[x := z]}{\bar{A}[x := u], \forall xA}$$
$$\exists \frac{\bar{A}[x := u], \forall xA}{\bar{\forall}\bar{A}[x := u], \Box \forall xA}$$
$$\forall \frac{\bar{A}[x := u], \Box \forall xA}{\bar{\exists}x \Diamond \bar{A}, \Box \forall xA}$$
$$= \frac{\bar{\forall}x \Diamond \bar{A} \lor \Box \forall xA}{\bar{\forall}x \Box A \to \Box \forall xA}$$

$$\exists \frac{A[x := u], \bar{A}[x := u]}{A[x := u], \exists x \bar{A}}$$

$$\forall \frac{A[x := u], \exists x \bar{A}}{\Box A[x := u], \Diamond \exists x \bar{A}}$$

$$\forall \frac{\Box A[x := u], \Diamond \exists x \bar{A}}{\forall x \Box A, \Diamond \exists x \bar{A}}$$

$$= \frac{\forall x \Box A, \Diamond \exists x \bar{A}}{\forall x \Box A \leftarrow \Box \forall x A}$$

$$\exists \frac{\bar{A}[x := u], A[x := z]}{\bar{A}[x := u], \forall xA}$$
$$\exists \frac{\bar{A}[x := u], \forall xA}{\bar{A}[x := u], \Box \forall xA}$$
$$\vee \frac{\exists x \diamond \bar{A}, \Box \forall xA}{\exists x \diamond \bar{A} \lor \Box \forall xA}$$
$$= \frac{\forall x \Box A \to \Box \forall xA}{\forall x \Box A \to \Box \forall xA}$$

$$\exists \frac{A[x := u], \bar{A}[x := u]}{A[x := u], \exists x \bar{A}}$$

$$\forall \frac{A[x := u], \exists x \bar{A}}{\Box A[x := u], \Diamond \exists x \bar{A}}$$

$$\forall \frac{\Box A[x := u], \Diamond \exists x \bar{A}}{\forall x \Box A, \Diamond \exists x \bar{A}}$$

$$= \frac{\forall x \Box A, \Diamond \exists x \bar{A}}{\forall x \Box A \lor \Diamond \exists x \bar{A}}$$

$$\forall \frac{\bar{A}[x := u], \ A[x := z]}{\bar{A}[x := u], \ \forall xA}$$

$$\exists \frac{\bar{A}[x := u], \ \forall xA}{\bar{A}[x := u], \ \Box \forall xA}$$

$$= \frac{\bar{A}[x := u], \ \Box \forall xA}{\bar{A} \times \Box \forall xA}$$

$$= \frac{\bar{A}[x := u], \ \Box \forall xA}{\bar{A} \times \Box \forall xA}$$

$$\exists \frac{A[x := u], \bar{A}[x := u]}{A[x := u], \exists x \bar{A}}$$

$$\forall \frac{A[x := u], \exists x \bar{A}}{\Box A[x := u], \Diamond \exists x \bar{A}}$$

$$\forall \frac{\forall x \Box A, \Diamond \exists x \bar{A}}{\forall x \Box A \lor \Diamond \exists x \bar{A}}$$

$$= \frac{\forall x \Box A \lor \Diamond \exists x \bar{A}}{\forall x \Box A \leftarrow \Box \forall x A}$$

$$\forall \frac{\bar{A}[x := u], \ A[x := z]}{\bar{A}[x := u], \ \forall xA}$$

$$\exists \frac{\bar{A}[x := u], \ \forall xA}{\bar{A}[x := u], \ \Box \forall xA}$$

$$= \frac{\bar{A}[x := u], \ \Box \forall xA}{\bar{A} \times \Box \forall xA}$$

$$\forall \frac{\bar{A}[x := u], \ A[x := z]}{\bar{A}[x := u], \ \forall xA}$$

$$\exists \frac{A[x := u], \ \bar{A}[x := u]}{A[x := u], \ \forall xA}$$

$$\exists \frac{A[x := u], \ \bar{A}[x := u]}{A[x := u], \ \bar{A}[x := u], \ \bar{A}[x := u]}$$

It's not so clear how to solve our problem in the sequent system. Let's look at a Hilbert system, where it is easily solved.

All propositional tautologies, modus ponens, plus:

 $\Box(A \to B) \to (\Box A \to \Box B)$ Nec $\frac{A}{\Box A}$ $A \rightarrow \forall x A$ if x not free in A $\forall x (A \rightarrow B) \rightarrow (\forall x A \rightarrow \forall x B)$ $\forall x A \rightarrow A[x := y]$ $\operatorname{Gen} \frac{A}{\forall xA}$

All propositional tautologies, modus ponens, plus:

 $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$ A Nec — $\Box A$ $A \rightarrow \forall x A$ if x not free in A $\forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB)$ $\forall xA \rightarrow A[x := y]$ not valid for varying domains! $\operatorname{Gen} \frac{A}{\forall xA}$

All propositional tautologies, modus ponens, plus:

 $\Box(A \to B) \to (\Box A \to \Box B)$ Nec $\frac{A}{\Box A}$ $A \rightarrow \forall x A$ if x not free in A $\forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB)$ $\forall y (\forall x A \rightarrow A[x := y])$ valid for varying domains $\operatorname{Gen} \frac{A}{\forall xA}$

All propositional tautologies, modus ponens, plus:

 $\Box(A \to B) \to (\Box A \to \Box B)$ A Nec — $\Box A$ $A \leftrightarrow \forall x A$ if x not free in A $\forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB)$ $\forall y (\forall x A \rightarrow A[x := y])$ valid for varying domains $\operatorname{Gen} \frac{A}{\forall xA}$ $\forall x \forall v A \leftrightarrow \forall v \forall x A$

The Problem, again

Up to now was folklore, see for example the book "First-Order Modal Logic" by Fitting and Mendelsohn.

Problem

Find a systematic cut-free axiomatisation of the four modal predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove $\forall xA \rightarrow A[x := y]$.

Question

Can we get it in the same way we just got the Hilbert-system?

The Problem, again

Up to now was folklore, see for example the book "First-Order Modal Logic" by Fitting and Mendelsohn.

Problem

Find a systematic cut-free axiomatisation of the four modal predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove $\forall xA \rightarrow A[x := y]$.

Question

Can we get it in the same way we just got the Hilbert-system?

The Problem, again

Up to now was folklore, see for example the book "First-Order Modal Logic" by Fitting and Mendelsohn.

Problem

Find a systematic cut-free axiomatisation of the four modal predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove $\forall xA \rightarrow A[x := y]$.

Question

Can we get it in the same way we just got the Hilbert-system?

How to weaken this system?

$$\Gamma, a, \overline{a} \qquad \wedge \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \qquad \operatorname{ctr} \frac{\Gamma, A, A}{\Gamma, A}$$
$$\forall \frac{\Gamma, A[x := u]}{\Gamma, \forall xA} \stackrel{u \text{ not free}}{\underset{in \text{ conclusion}}{\operatorname{unot}}} \exists \frac{\Gamma, A[x := u]}{\Gamma, \exists xA}$$

Nested Sequents

Solution Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Idea ∀x[] is for ∀x what "," is for ∨.

Example

 $A, B \lor C, \forall x[A, B], \forall y[\forall z[\exists xE, \forall yF, G]]$

Nested Sequents

Solution

Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Idea $\forall x$ [] is for $\forall x$ what "," is for \lor .

Example

 $A, B \lor C, \forall x[A, B], \forall y[\forall z[\exists xE, \forall yF, G]]$

Nested Sequents

Solution

Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Idea $\forall x[$] is for $\forall x$ what "," is for \lor .

Example

 $A, B \lor C, \forall x[A, B], \forall y[\forall z[\exists xE, \forall yF, G]]$

$$\Gamma\{a,\bar{a}\} \wedge \frac{\Gamma\{A\}}{\Gamma\{A \land B\}} \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \quad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \qquad \sup \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ \bigcup \{\forall x[\Delta]\} \text{ occur in } \Gamma\{\}$$

$$\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not}}$$

$$\Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

 $\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not}$ free in premise

$$\Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \qquad \sup \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ \text{ occur in } \Gamma\{ \}$$

$$\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A], f(x) \in U\}}{\Gamma\{\exists xA\}}$$

$$\Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \qquad \sup \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ occur in \Gamma\{ \}$$

$$\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x\}}{\Gamma\{\exists xA\}}$$

$$\Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \qquad \sup \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ occur in \Gamma\{ \}$$

$$\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not}$$
 free in premise

$$\Gamma\{a,\bar{a}\} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}} \quad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}}$$

$$\begin{split} & \Gamma\{a, \overline{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \land B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ is not} \\ & \exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for sentences of predicate logic $\vdash \forall y (\forall xA \rightarrow A[x := y])$
- has syntactic cut-elimination
- easily captures empty domains
- has the "free variable property"

$$\begin{split} & \Gamma\{a, \overline{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ is not} \\ & \exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for sentences of predicate logic $\vdash \forall y (\forall xA \rightarrow A[x := y])$
- has syntactic cut-elimination
- easily captures empty domains
- has the "free variable property"

$$\begin{split} & \Gamma\{a, \overline{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ is not} \\ & \exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for sentences of predicate logic $\vdash \forall y (\forall x A \rightarrow A[x := y])$
- has syntactic cut-elimination
- easily captures empty domains
- has the "free variable property"

$$\begin{split} & \Gamma\{a, \overline{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ is not} \\ & \exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for sentences of predicate logic $\vdash \forall y (\forall x A \rightarrow A[x := y])$
- has syntactic cut-elimination
- easily captures empty domains
- has the "free variable property"

$$\begin{split} & \Gamma\{a, \overline{a}\} \qquad \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A, A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ is not} \\ & \exists_1 \frac{\Gamma\{A[x := u]\}}{\Gamma\{\exists xA\}} \text{ where } u \text{ is not} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for sentences of predicate logic $\vdash \forall y (\forall x A \rightarrow A[x := y])$
- has syntactic cut-elimination
- easily captures empty domains
- has the "free variable property"