How to Universally Close the Existential-Rule

Kai Brünnler Universität Bern

	classical predicate logic	
$\forall x A \supset \exists x A \text{ is:}$	valid	

Free Logic

	classical predicate logic	
$\forall x A \supset \exists x A \text{ is:}$	valid	
which domains:	the non-empty ones	

Free Logic

	classical predicate logic	free logic
$\forall x A \supset \exists x A \text{ is:}$	valid	not valid
which domains:	the non-empty ones	all of them

Problem

How to get a sequent system for free logic?

Problem How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

$$\Gamma, a, \overline{a} \qquad \wedge \frac{\Gamma, A}{\Gamma, A \wedge B} \qquad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \qquad \operatorname{ctr} \frac{\Gamma, A, A}{\Gamma, A}$$
$$\forall \frac{\Gamma, A[x := y]}{\Gamma, \forall xA} \xrightarrow{y \text{ not free in}} \qquad \exists \frac{\Gamma, A[x := y]}{\Gamma, \exists xA}$$

Problem How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

$$\Gamma, a, \overline{a} \qquad \wedge \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \qquad \operatorname{ctr} \frac{\Gamma, A, A}{\Gamma, A}$$
$$\forall \frac{\Gamma, A[x := y]}{\Gamma, \forall xA} \xrightarrow{y \text{ not free in}} \qquad \exists \frac{\Gamma, A[x := y]}{\Gamma, \exists xA}$$

A Solution (Bencivenga, eighties)

$$\forall_{\mathsf{F}} \frac{\Gamma, \mathcal{A}[x := y], \overline{\mathcal{E}(y)}}{\Gamma, \forall x \mathcal{A}} \xrightarrow{y \text{ not free in }} \exists_{\mathsf{F}} \frac{\Gamma, \mathcal{A}[x := y] \quad \Gamma, \mathcal{E}(y)}{\Gamma, \exists x \mathcal{A}}$$

Craig Interpolation

If $A \supset B$ then there is a C in the language $L(A) \cap L(B)$ such that $A \supset C$ and $C \supset B$.

Craig Interpolation

If $A \supset B$ then there is a C in the language $L(A) \cap L(B)$ such that $A \supset C$ and $C \supset B$.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If $A \supset B$ then there is a C in the language $(L(A) \cap L(B)) \cup \{\mathcal{E}\}$ such that $A \supset C$ and $C \supset B$.

Craig Interpolation

If $A \supset B$ then there is a C in the language $L(A) \cap L(B)$ such that $A \supset C$ and $C \supset B$.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If $A \supset B$ then there is a *C* in the language $(L(A) \cap L(B)) \cup \{\mathcal{E}\}$ such that $A \supset C$ and $C \supset B$.

Problem

Find a sequent system which gives the usual interpolation result.

Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic

 $A \rightarrow \forall xA \quad \text{if } x \text{ not free in } A$ $\forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB)$ $\forall xA \rightarrow A[x := y]$ $\text{Gen} \frac{A}{\forall xA}$

Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic Free Logic $A \rightarrow \forall x A$ if x not free in A $A \leftrightarrow \forall x A$ if x not free in A $\forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB) \quad \forall x(A \rightarrow B) \rightarrow (\forall xA \rightarrow \forall xB)$ $\forall x A \rightarrow A[x := y]$ $\forall y (\forall x A \rightarrow A[x := y])$ $\operatorname{Gen} \frac{A}{\forall xA}$ $\operatorname{Gen} \frac{A}{\forall xA}$ $\forall x \forall y A \leftrightarrow \forall y \forall x A$

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Idea $\forall x[$] is for $\forall x$ what "," is for \lor .

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for $\forall x$, denoted $\forall x$ [].

Idea $\forall x[$] is for $\forall x$ what "," is for \lor .

Example

 $A, B \lor C, \forall x [A, B], \forall y [\forall z [\exists x E, \forall y F, G]]$

A context $\Gamma\{\ \}$ is a sequent with exactly one occurrence of the symbol $\{\ \}.$

A context Γ { } is a sequent with exactly one occurrence of the symbol { }. Example: Γ { } = A, $\forall x$ [$\forall y[B]$, { }] A context $\Gamma\{ \}$ is a sequent with exactly one occurrence of the symbol $\{ \}$. Example: $\Gamma\{ \} = A, \forall x [\forall y[B], \{ \}]$

The sequent $\Gamma\{\Delta\}$ is obtained by replacing $\{\ \}$ inside $\Gamma\{\ \}$ by Δ .

A context $\Gamma\{ \}$ is a sequent with exactly one occurrence of the symbol $\{ \}$. Example: $\Gamma\{ \} = A, \forall x [\forall y[B], \{ \}]$

The sequent $\Gamma\{\Delta\}$ is obtained by replacing $\{\ \}$ inside $\Gamma\{\ \}$ by Δ . Example: If $\Delta = C, \forall z[D]$ then

 $\mathsf{F}\{\Delta\} = A, \forall x [\forall y [B], C, \forall z [D]] \quad .$

A context $\Gamma\{ \}$ is a sequent with exactly one occurrence of the symbol $\{ \}$. Example: $\Gamma\{ \} = A, \forall x [\forall y[B], \{ \}]$

The sequent $\Gamma\{\Delta\}$ is obtained by replacing $\{\ \}$ inside $\Gamma\{\ \}$ by Δ . Example: If $\Delta = C, \forall z[D]$ then

$$\Gamma\{\Delta\} = A, \forall x [\forall y [B], C, \forall z [D]]$$

.

A context *binds* y if it is of the form $\Gamma_1\{\forall y[\Gamma_2\{\}]\}$.

$$\Gamma\{a,\bar{a}\} \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}} \quad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\Gamma\{a,\bar{a}\} \wedge \frac{\Gamma\{A\}}{\Gamma\{A \wedge B\}} \quad \forall \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}} \quad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}}$$

$$\forall \frac{\mathsf{\Gamma}\{\forall x[A]\}}{\mathsf{\Gamma}\{\forall xA\}}$$

$$\begin{split} & \Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ occur in } \Gamma\{\} \end{split}$$

$$\begin{split} & \Gamma\{a,\bar{a}\} & \wedge \frac{\Gamma\{A\}}{\Gamma\{A \land B\}} & \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} & \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall xA\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall xA\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall xA\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall xA\}} & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}} \\ & \operatorname{scp} \frac{\forall x[\Gamma\{A \lor B\}}{\Gamma\{A \lor B\}}$$

$$\begin{split} & \Gamma\{a,\bar{a}\} \qquad \wedge \frac{\Gamma\{A\}}{\Gamma\{A \land B\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \lor B\}} \qquad \operatorname{ctr} \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \\ & \forall \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\forall xA\}} \qquad \operatorname{scp} \frac{\forall x[\Gamma\{\Delta\}]}{\Gamma\{\forall x[\Delta]\}} \text{ where } x \text{ does not} \\ & \operatorname{occur} \operatorname{in} \Gamma\{\} \\ & \exists_1 \frac{\Gamma\{A[x:=y]\}}{\Gamma\{\exists xA\}} \text{ where } \Gamma\{\} \qquad \exists_2 \frac{\Gamma\{\forall x[A]\}}{\Gamma\{\exists xA\}} \end{split}$$

- complete for (sentences of) predicate logic
- subsystem without \exists_2 -rule complete for free logic
- has syntactic cut-elimination
- usual interpolation follows easily

The General Problem of Quantifiers in Non-Classical Logics

Four Different Modal Predicate Logics

Four Different Modal Predicate Logics

Four Different Modal Predicate Logics

Future Work

• Find a systematic cut-free axiomatisation of the four modal predicate logics.

Future Work

• Find a systematic cut-free axiomatisation of the four modal predicate logics.

Also:

• Find a system for Gödel-Dummett-Logic with varying domains.

Future Work

• Find a systematic cut-free axiomatisation of the four modal predicate logics.

Also:

- Find a system for Gödel-Dummett-Logic with varying domains.
- Find a system for bi-intuitionistic logic with varying domains