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A Sequent System for Classical Predicate Logic
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A Solution (Bencivenga, eighties)

M AKX =y],E(y) J not free in : FAx:=y] T,E()

F

r,VXA conclusion r7 IxA

F



Craig Interpolation

If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.



Craig Interpolation
If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If A> B then there is a C in the language (L(A) N L(B))U{&}
such that A> C and C > B.



Craig Interpolation

If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If A> B then there is a C in the language (L(A) N L(B))U{&}
such that A> C and C > B.

Problem
Find a sequent system which gives the usual interpolation result.
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Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic

A—VxXA

Vx(A — B) — (VxA — VxB)

if x not free in A

VxA — Alx :=y]

Gen

A
VxA

Free Logic

A-VXA  if x not free in A
Vx(A — B) — (VxA — VxB)
Vy(VxA = Alx :==y])

A
VxA

VXVyA & VyVxA

Gen
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Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for Vx, denoted Vx| |.

ldea
Vx| | is for Vx what “," is for v.

Example

A, BV C, Vx[A, B, Vy|vz|3xE, VyF, G|
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Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: T{ } = A,Vx[Vy[B],{ }]

The sequent {A} is obtained by replacing { } inside ['{ } by A.
Example: If A = C,Vz[D] then

M{A} = A Vx[Vy[B], C,Vz[D]]

A context binds y if it is of the form T1{Vy[l2{ }]}.



A Nested Sequent System for Predicate Logic

r{A} r{B} 5 r{A, B} r{A, A}

a3} r{AnB)} {AVB)  T{A}




A Nested Sequent System for Predicate Logic

a3 r{A} r{B} r{A, B} r{A A}
@3 ey raver T
JT{A

r{vxA}



A Nested Sequent System for Predicate Logic

Fla3 r{A} TI{B} r{A B} M{A A}
{av a} r{A/\B} vr{A\/B} “ F{A}
v r{VX[A]} VX[F{A}] where x does not

r{VxA} “PTIUX[A]} oceurin T{}



A Nested Sequent System for Predicate Logic

Fla3 r{A} TI{B} r{A B} M{A A}
e THasr Haver YT
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

M{Ax = yl}

1

r{3xA}



A Nested Sequent System for Predicate Logic

a3 r{A} T{B} r{A, B} M{A A}
@3 e raver A
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

r{A[X = y]} where I'{ }
M{3IxA} binds y

1



A Nested Sequent System for Predicate Logic

a3 r{A} T{B} r{A, B} M{A A}
@3 e raver A
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

HAX = v ey o, TWXIAD
[{3xA}  binds y " T{3xA}

1



A Nested Sequent System for Predicate Logic

ST B TAB) T{AA)
{a, 3} W V m ctr r{A}
v EM scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

HAX = v ey o, TWXIAD
[{3xA}  binds y " T{3xA}

1

complete for (sentences of) predicate logic

e subsystem without J»-rule complete for free logic

has syntactic cut-elimination

usual interpolation follows easily



The General Problem of Quantifiers
in Non-Classical Logics
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Four Different Modal Predicate Logics
VxOA < OVxA

Constant
Domains

?
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Anti-
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naive combination
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Future Work

e Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:
e Find a system for Godel-Dummett-Logic with varying domains.

e Find a system for bi-intuitionistic logic with varying domains
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