How to Universally Close the Existential-Rule

Kai Brunnler
Universitat Bern



Free Logic

classical predicate logic

VxA D IxA is:

valid




Free Logic

classical predicate logic

VxA D IxA is:

valid

which domains:

the non-empty ones




Free Logic

classical predicate logic | free logic
VxA D dxA is: valid not valid
which domains: the non-empty ones all of them




Problem
How to get a sequent system for free logic?



Problem
How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

_ NnAa I,B A B MLAA
F,a,a N——— \% ctr
MAAB MAvB MA
vr’A[X::y] y not free in 3 r’A[X::y]

r,VXA conclusion r} IxA



Problem
How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

r a3 NnA IB A B A A
,a,a L \2 ctr
AAB rAvVB rA
vr’A[X::y] y not free in 3 r’A[X::y]
r,VXA conclusion r} IxA

A Solution (Bencivenga, eighties)

M AKX =y],E(y) J not free in : FAx:=y] T,E()

F

r,VXA conclusion r7 IxA

F



Craig Interpolation

If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.



Craig Interpolation
If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If A> B then there is a C in the language (L(A) N L(B))U{&}
such that A> C and C > B.



Craig Interpolation

If A> B then there is a C in the language L(A) N L(B) such that
A>Cand C>B.

From Bencivenga's System we only get:

Weaker Form of Interpolation

If A> B then there is a C in the language (L(A) N L(B))U{&}
such that A> C and C > B.

Problem
Find a sequent system which gives the usual interpolation result.



Hilbert Systems

All propositional tautologies, modus ponens, plus:
Predicate Logic
A—=VxA  if x not free in A
Vx(A — B) — (VxA — VxB)
VxA — Alx :=y]

A
VxA

Gen




Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic

A—VxXA

Vx(A — B) — (VxA — VxB)

if x not free in A

VxA — Alx :=y]

Gen

A
VxA

Free Logic

A-VXA  if x not free in A
Vx(A — B) — (VxA — VxB)
Vy(VxA = Alx :==y])

A
VxA

VXVyA & VyVxA

Gen




Add the Missing Structural Quantifier

Nested Sequents
Extend sequents by structural connective for Vx, denoted Vx| |.



Add the Missing Structural Quantifier

Nested Sequents
Extend sequents by structural connective for Vx, denoted Vx| |.

ldea
Vx| | is for Vx what “," is for v.



Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for Vx, denoted Vx| |.

ldea
Vx| | is for Vx what “," is for v.

Example

A, BV C, Vx[A, B, Vy|vz|3xE, VyF, G|



Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.



Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: T{ } = A,Vx[Vy[B],{ }]



Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: T{ } = A,Vx[Vy[B],{ }]

The sequent {A} is obtained by replacing { } inside ['{ } by A.



Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: T{ } = A,Vx[Vy[B],{ }]

The sequent {A} is obtained by replacing { } inside ['{ } by A.
Example: If A = C,Vz[D] then

M{A} = A Vx[Vy[B], C,Vz[D]]



Some Definitions

A context T'{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: T{ } = A,Vx[Vy[B],{ }]

The sequent {A} is obtained by replacing { } inside ['{ } by A.
Example: If A = C,Vz[D] then

M{A} = A Vx[Vy[B], C,Vz[D]]

A context binds y if it is of the form T1{Vy[l2{ }]}.



A Nested Sequent System for Predicate Logic

r{A} r{B} 5 r{A, B} r{A, A}

a3} r{AnB)} {AVB)  T{A}




A Nested Sequent System for Predicate Logic

a3 r{A} r{B} r{A, B} r{A A}
@3 ey raver T
JT{A

r{vxA}



A Nested Sequent System for Predicate Logic

Fla3 r{A} TI{B} r{A B} M{A A}
{av a} r{A/\B} vr{A\/B} “ F{A}
v r{VX[A]} VX[F{A}] where x does not

r{VxA} “PTIUX[A]} oceurin T{}



A Nested Sequent System for Predicate Logic

Fla3 r{A} TI{B} r{A B} M{A A}
e THasr Haver YT
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

M{Ax = yl}

1

r{3xA}



A Nested Sequent System for Predicate Logic

a3 r{A} T{B} r{A, B} M{A A}
@3 e raver A
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

r{A[X = y]} where I'{ }
M{3IxA} binds y

1



A Nested Sequent System for Predicate Logic

a3 r{A} T{B} r{A, B} M{A A}
@3 e raver A
v r{VX[A]} scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

HAX = v ey o, TWXIAD
[{3xA}  binds y " T{3xA}

1



A Nested Sequent System for Predicate Logic

ST B TAB) T{AA)
{a, 3} W V m ctr r{A}
v EM scp VX[F{A}] where x does not
r{VXA} r{VX[A]} occur in I'{ }

HAX = v ey o, TWXIAD
[{3xA}  binds y " T{3xA}

1

complete for (sentences of) predicate logic

e subsystem without J»-rule complete for free logic

has syntactic cut-elimination

usual interpolation follows easily



The General Problem of Quantifiers
in Non-Classical Logics



Four Different Modal Predicate Logics
VxOA < OVxA

Constant
Domains

VxOA — OVxA / \ VxOA + OVxA

Anti-
monotonic
Domains

NS

Varying
Domains

Monotonic
Domains



Four Different Modal Predicate Logics
VxOA < OVxA

Constant
Domains

VxOA — OVxA / \ VxOA + OVxA

Anti- .
) Monotonic
monotonic

. Domains
Domains

NN

naive combination

Varying of proof systems
Domains



Four Different Modal Predicate Logics
VxOA < OVxA

Constant
Domains

?
VxOA — OVxA / \ N VxOA + OVxA

Anti-
monotonic
Domains

AN /?/ AN

naive combination

Varying ./ of proof systems
Domains

Monotonic
Domains



Future Work

e Find a systematic cut-free axiomatisation of the four modal
predicate logics.



Future Work

e Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:

e Find a system for Godel-Dummett-Logic with varying domains.



Future Work

e Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:
e Find a system for Godel-Dummett-Logic with varying domains.

e Find a system for bi-intuitionistic logic with varying domains



	Free Logic

