
How to Universally Close the Existential-Rule

Kai Brünnler
Universität Bern

Free Logic

classical predicate logic

free logic

∀xA ⊃ ∃xA is: valid

not valid

which domains: the non-empty ones all of them

Free Logic

classical predicate logic

free logic

∀xA ⊃ ∃xA is: valid

not valid

which domains: the non-empty ones

all of them

Free Logic

classical predicate logic free logic
∀xA ⊃ ∃xA is: valid not valid

which domains: the non-empty ones all of them

Problem
How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := y]
∀ −−−−−−−−−−−−− y not free in

conclusionΓ, ∀xA
Γ,A[x := y]

∃ −−−−−−−−−−−−−
Γ,∃xA

A Solution (Bencivenga, eighties)

Γ,A[x := y], E(y)
∀F −−−−−−−−−−−−−−−−−−− y not free in

conclusionΓ,∀xA
Γ,A[x := y] Γ, E(y)

∃F −−−−−−−−−−−−−−−−−−−−−−−−
Γ,∃xA

Problem
How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := y]
∀ −−−−−−−−−−−−− y not free in

conclusionΓ, ∀xA
Γ,A[x := y]

∃ −−−−−−−−−−−−−
Γ,∃xA

A Solution (Bencivenga, eighties)

Γ,A[x := y], E(y)
∀F −−−−−−−−−−−−−−−−−−− y not free in

conclusionΓ,∀xA
Γ,A[x := y] Γ, E(y)

∃F −−−−−−−−−−−−−−−−−−−−−−−−
Γ,∃xA

Problem
How to get a sequent system for free logic?

A Sequent System for Classical Predicate Logic

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−

Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := y]
∀ −−−−−−−−−−−−− y not free in

conclusionΓ, ∀xA
Γ,A[x := y]

∃ −−−−−−−−−−−−−
Γ,∃xA

A Solution (Bencivenga, eighties)

Γ,A[x := y], E(y)
∀F −−−−−−−−−−−−−−−−−−− y not free in

conclusionΓ,∀xA
Γ,A[x := y] Γ, E(y)

∃F −−−−−−−−−−−−−−−−−−−−−−−−
Γ,∃xA

Craig Interpolation

If A ⊃ B then there is a C in the language L(A) ∩ L(B) such that
A ⊃ C and C ⊃ B.

From Bencivenga’s System we only get:

Weaker Form of Interpolation

If A ⊃ B then there is a C in the language (L(A) ∩ L(B)) ∪ {E}
such that A ⊃ C and C ⊃ B.

Problem
Find a sequent system which gives the usual interpolation result.

Craig Interpolation

If A ⊃ B then there is a C in the language L(A) ∩ L(B) such that
A ⊃ C and C ⊃ B.

From Bencivenga’s System we only get:

Weaker Form of Interpolation

If A ⊃ B then there is a C in the language (L(A) ∩ L(B)) ∪ {E}
such that A ⊃ C and C ⊃ B.

Problem
Find a sequent system which gives the usual interpolation result.

Craig Interpolation

If A ⊃ B then there is a C in the language L(A) ∩ L(B) such that
A ⊃ C and C ⊃ B.

From Bencivenga’s System we only get:

Weaker Form of Interpolation

If A ⊃ B then there is a C in the language (L(A) ∩ L(B)) ∪ {E}
such that A ⊃ C and C ⊃ B.

Problem
Find a sequent system which gives the usual interpolation result.

Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic

A→∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y]

A
Gen −−−−
∀xA

Hilbert Systems

All propositional tautologies, modus ponens, plus:

Predicate Logic Free Logic

A→∀xA if x not free in A A↔∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB) ∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y] ∀y(∀xA→ A[x := y])

A
Gen −−−−
∀xA

A
Gen −−−−
∀xA

∀x∀yA↔ ∀y∀xA

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Add the Missing Structural Quantifier

Nested Sequents

Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Some Definitions

A context Γ{ } is a sequent with exactly one occurrence of the
symbol { }.

Example: Γ{ } = A,∀x [∀y [B], { }]

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.
Example: If ∆ = C ,∀z [D] then

Γ{∆} = A, ∀x [∀y [B],C , ∀z [D]] .

A context binds y if it is of the form Γ1{∀y [Γ2{ }]}.

Some Definitions

A context Γ{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: Γ{ } = A, ∀x [∀y [B], { }]

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.
Example: If ∆ = C ,∀z [D] then

Γ{∆} = A, ∀x [∀y [B],C , ∀z [D]] .

A context binds y if it is of the form Γ1{∀y [Γ2{ }]}.

Some Definitions

A context Γ{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: Γ{ } = A, ∀x [∀y [B], { }]

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.

Example: If ∆ = C ,∀z [D] then

Γ{∆} = A, ∀x [∀y [B],C , ∀z [D]] .

A context binds y if it is of the form Γ1{∀y [Γ2{ }]}.

Some Definitions

A context Γ{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: Γ{ } = A, ∀x [∀y [B], { }]

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.
Example: If ∆ = C ,∀z [D] then

Γ{∆} = A, ∀x [∀y [B],C , ∀z [D]] .

A context binds y if it is of the form Γ1{∀y [Γ2{ }]}.

Some Definitions

A context Γ{ } is a sequent with exactly one occurrence of the
symbol { }.
Example: Γ{ } = A, ∀x [∀y [B], { }]

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.
Example: If ∆ = C ,∀z [D] then

Γ{∆} = A, ∀x [∀y [B],C , ∀z [D]] .

A context binds y if it is of the form Γ1{∀y [Γ2{ }]}.

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−−

where Γ{ }
binds y

Γ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−−

where Γ{ }
binds y

Γ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−−

where Γ{ }
binds y

Γ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−−

where Γ{ }
binds y

Γ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{ }

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{ }

binds yΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

A Nested Sequent System for Predicate Logic

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−

Γ{A ∨ B}
Γ{A,A}

ctr −−−−−−−−−
Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}
∀x [Γ{∆}]

scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{ }

binds yΓ{∃xA}
Γ{∀x [A]}

∃2 −−−−−−−−−−
Γ{∃xA}

• complete for (sentences of) predicate logic

• subsystem without ∃2-rule complete for free logic

• has syntactic cut-elimination

• usual interpolation follows easily

The General Problem of Quantifiers
in Non-Classical Logics

Four Different Modal Predicate Logics

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

Four Different Modal Predicate Logics

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

Four Different Modal Predicate Logics

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

Future Work

• Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:

• Find a system for Gödel-Dummett-Logic with varying domains.

• Find a system for bi-intuitionistic logic with varying domains

Future Work

• Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:

• Find a system for Gödel-Dummett-Logic with varying domains.

• Find a system for bi-intuitionistic logic with varying domains

Future Work

• Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Also:

• Find a system for Gödel-Dummett-Logic with varying domains.

• Find a system for bi-intuitionistic logic with varying domains

	Free Logic

