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@ Proof Theory and Why it is Interesting



Proof Theory

e Proof theory is a branch of mathematics which studies proofs
as mathematical objects.

e |t started out as a way to make sure that a logical system does
not prove contradictions. Such a system is called consistent.



Some History

1879 Frege's Begriffsschrift

(let's formalise mathematics)
1903 Russel's Paradox

(your formalisation is inconsistent)
1920 Hilbert's Program

(let's rule out inconsistencies)
1931 Godel's Incompleteness Theorems

(you can't)

1935 Gentzen's Sequent Calculus
(let’s anyway do what we can)



The Sequent Calculus
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Theorem

If a formula is provable then it is provable without cut.

Proof

Take a proof with cuts. Push the cuts upwards until they
disappear. Now you have a proof without cuts.




Consequences of Cut Elimination

@ Properties of the logic: consistency, decidability, interpolation,
Herbrand's Theorem etc.

® Easily implemented for automated reasoning

© suitable for proof-search-as-programming aka logic
programming

O suitable for proof-normalisation-as programming aka
functional programming
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Modalities and Quantifiers

OA, OA IxA, VxA
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“Varying Domains”



The Barcan Formula

VxOA < OVxA
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The Naive Proof System
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Neither Varying nor Constant Domains...
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Neither Varying nor Constant Domains...

A[x = u], Alx == 7] - Alx = u], Alx = u]
Alx = u], VxA Alx := u],3xA
<>A[x = u], OVxA DA[X = u], OIxA
EIX<>A OVxA VXEIA OIxA
EIX<>A v OVXA VXDA v OIXA

T VxOA — OVXA T VxOA ¢ OVXA
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What goes wrong in the naive system?

A[x = u], Alx == 7]
Alx = u], VxA
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VXEIA OIxXA
VXDAVOHXA
" VxOA  OVXA




What goes wrong in the naive system?

A[X = u], Alx := 7]
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A[x = u], Alx := u]
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VXDA OIxXA
VXEIA v OIxA
" VXOA  OVXA




What goes wrong in the naive system?
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What goes wrong in the naive system?
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What goes wrong in the naive system?

. Alx = u], Alx := 7] Alx = u], Alx := u]
. Alx := u], VxA HD Alx = u], IxA
. OA[x := u] ,OVXA y OA[x := u] ,©3xA
IxOA , OVXA VxOA , OdxA
" 3xOAV OvxA " UxOAV O3xA
" YxOA — OVXA " VxOA « OVXA

It's not so clear how to solve our problem in the sequent system.
Let's look at a Hilbert system, where it is easily solved.



A Hilbert System

All propositional tautologies, modus ponens, plus:
0(A— B) — (0DA — OB)

A
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Vx(A — B) — (VXA — VxB)
VxA — Alx :=y]

A
VxA

Gen
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A Hilbert System
All propositional tautologies, modus ponens, plus:
0(A— B) — (0DA — OB)

A

Nec —

oA

AVxA if x not free in A
Vx(A — B) — (VXA — VxB)
Vy(VxA — A[x :=y]) valid for varying domains

A

VxA
VxVyA < VyVxA

Gen
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The Problem
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Find a systematic cut-free axiomatisation of the four modal
predicate logics.
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The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
VxA — Alx :=y].

Question
Can we get it in the same way we just got the Hilbert-system?



How to weaken this system?
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How to weaken this system?

NnA I,B A B MnAA
Maa LSRRI Y ctr
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vr’A[X = u] u not free

F, VxA in conclusion
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Nested Sequents

Solution
Extend sequents by structural connective for Vx, denoted Vx| |.

ldea
Vx| | is for Vx what " is for V.

Example

A, BV C, Vx|A, B|, 7y[7z[3xE, YyF, G||



A Nested Sequent System
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A Nested Sequent System
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A Nested Sequent System
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A Nested Sequent System

(a3 r{A} T{B} r{A, B} M{A, A}
{23} r{AAB) ‘rtaver A
v r{VX[A]} scp VX[F{A}] where x does not
F{VxA} M{Vx[A]} occurinr{}

A =Y e vy 5, TAVXIAD
[{3xA}  binds y " T{3xA}
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A Nested Sequent System for Predicate Logic

e sound for varying domains
FYxA — Alx :==y]

complete for sentences of predicate logic
FVy(VxA — Alx :=y])

has syntactic cut-elimination

subsystem without 35> captures possibly-empty domains

has the "free variable property”



A Nested Sequent System for Modal Predicate Logic

Varying Domains

r{VX[A{A}]} where x does not occur 3 r{A[X = y]} where I'{}
r{/\{VX[A]}} in the local context A{} ' r{HXA} locally binds y
JHolly - oA Al
r{oA} r{OA, o[A]}

Barcan and Converse Barcan Rule

r{VX[/\{A}]} where x does not cha r{A[X = y]} where ['{}
r{/\{VX[A]}} occur in A{} F{HXA} binds y
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