
On a Mismatch in the

Structure of Proofs

Kai Brünnler
Universität Bern

Outline

1 Proof Theory and Why it is Interesting

2 Modal Predicate Logic and its Lack of Proof Systems

3 A Nested Sequent System for Modal Predicate Logic

Outline

1 Proof Theory and Why it is Interesting

2 Modal Predicate Logic and its Lack of Proof Systems

3 A Nested Sequent System for Modal Predicate Logic

Proof Theory

• Proof theory is a branch of mathematics which studies proofs
as mathematical objects.

• It started out as a way to make sure that a logical system does
not prove contradictions. Such a system is called consistent.

Some History

1879 Frege’s Begriffsschrift
(let’s formalise mathematics)

1903 Russel’s Paradox
(your formalisation is inconsistent)

1920 Hilbert’s Program
(let’s rule out inconsistencies)

1931 Gödel’s Incompleteness Theorems
(you can’t)

1935 Gentzen’s Sequent Calculus
(let’s anyway do what we can)

The Sequent Calculus

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

The Sequent Calculus

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

Γ,A Γ, Ā
cut −−−−−−−−−−−

Γ

The Sequent Calculus

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

Ā → Γ A → Γ
cut −−−−−−−−−−−−−−−−

Γ

Example Proof

a, b, ā a, b, b̄
∧ −−−−−−−−−−−−−−−−

a, b, ā ∧ b̄
∨ −−−−−−−−−−−−−−
a, b ∨ (ā ∧ b̄)

∨ −−−−−−−−−−−−−−−−−
a ∨ (b ∨ (ā ∧ b̄))

Cut Elimination

Theorem
If a formula is provable then it is provable without cut.

Cut Elimination

Theorem
If a formula is provable then it is provable without cut.

Proof
Take a proof with cuts. Push the cuts upwards until they
disappear. Now you have a proof without cuts.

Cut Elimination

Theorem
If a formula is provable then it is provable without cut.

Proof
Take a proof with cuts. Push the cuts upwards until they
disappear. Now you have a proof without cuts.

1

Γ,B

2

Γ,C
∧ −−−−−−−−−−−−−−−−

Γ,B ∧ C

3

Γ, B̄, C̄
∨ −−−−−−−−−

Γ, B̄ ∨ C̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ

;
1

Γ,B

2

Γ,C
wk −−−−−−−−

Γ, B̄,C

3

Γ, B̄, C̄
cut −−−−−−−−−−−−−−−−−−−

Γ, B̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−

Γ

Consequences of Cut Elimination

1 Properties of the logic: consistency, decidability, interpolation,
Herbrand’s Theorem etc.

2 Easily implemented for automated reasoning

3 suitable for proof-search-as-programming aka logic
programming

4 suitable for proof-normalisation-as programming aka
functional programming

Outline

1 Proof Theory and Why it is Interesting

2 Modal Predicate Logic and its Lack of Proof Systems

3 A Nested Sequent System for Modal Predicate Logic

Modalities and Quantifiers

Domain

∃xA,∀xA2A,3A

Modalities and Quantifiers

Domain

“Constant Domains”

Modalities and Quantifiers

“Varying Domains”

The Barcan Formula

∀x2A↔ 2∀xA

The Barcan Formula

∀x2A↔ 2∀xA
valid not valid

(neither direction)

The Naive Proof System

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ,∀xA

Γ,A[x := u]
∃ −−−−−−−−−−−−−

Γ,∃xA

Γ,A
2 −−−−−−−−−−−−

3Γ,2A,Σ

Neither Varying nor Constant Domains...

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u],∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

Neither Varying nor Constant Domains...

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u],∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

More Domain Types

Constant
Domains

Varying
Domains

∀x2A↔ 2∀xA

Anti-
monotonic
Domains

∀x2A→ 2∀xA

Monotonic
Domains

∀x2A← 2∀xA

naive combination
of proof systems

?

?

What goes wrong in the naive system?

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u],∀xA
2 −−−−−−−−−−−−−−−−−−−−

3Ā[x := u],2∀xA
∃ −−−−−−−−−−−−−−−−−−−−
∃x3Ā,2∀xA

∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u],A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−

Ā[x := u],∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−

A[x := u],∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−

2A[x := u],3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−
∀x2A,3∃xĀ

∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−−−

A[x := u], ∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−−

2A[x := u] ,3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−−

∀x2A ,3∃xĀ
∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

What goes wrong in the naive system?

Ā[x := u], A[x := z]
∀ −−−−−−−−−−−−−−−−−−−−−−−−

Ā[x := u], ∀xA
2 −−−−−−−−−−−−−−−−−−−−−−

3Ā[x := u] ,2∀xA
∃ −−−−−−−−−−−−−−−−−−−−−−

∃x3Ā ,2∀xA
∨ −−−−−−−−−−−−−−−−
∃x3Ā ∨ 2∀xA

= −−−−−−−−−−−−−−−−−
∀x2A→ 2∀xA

A[x := u], Ā[x := u]
∃ −−−−−−−−−−−−−−−−−−−−−−−−

A[x := u], ∃xĀ
2 −−−−−−−−−−−−−−−−−−−−−−

2A[x := u] ,3∃xĀ
∀ −−−−−−−−−−−−−−−−−−−−−−

∀x2A ,3∃xĀ
∨ −−−−−−−−−−−−−−−−
∀x2A ∨ 3∃xĀ

= −−−−−−−−−−−−−−−−−
∀x2A← 2∀xA

It’s not so clear how to solve our problem in the sequent system.
Let’s look at a Hilbert system, where it is easily solved.

A Hilbert System

All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y]

A
Gen −−−−
∀xA

A Hilbert System

All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀xA→ A[x := y] not valid for varying domains!

A
Gen −−−−
∀xA

A Hilbert System

All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A→ ∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀y(∀xA→ A[x := y]) valid for varying domains

A
Gen −−−−
∀xA

A Hilbert System

All propositional tautologies, modus ponens, plus:

2(A→ B)→ (2A→ 2B)

A
Nec −−−

2A

A↔∀xA if x not free in A

∀x(A→ B)→ (∀xA→ ∀xB)

∀y(∀xA→ A[x := y]) valid for varying domains

A
Gen −−−−
∀xA

∀x∀yA↔ ∀y∀xA

Outline

1 Proof Theory and Why it is Interesting

2 Modal Predicate Logic and its Lack of Proof Systems

3 A Nested Sequent System for Modal Predicate Logic

The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question

Can we get it in the same way we just got the Hilbert-system?

The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question

Can we get it in the same way we just got the Hilbert-system?

The Problem

Problem
Find a systematic cut-free axiomatisation of the four modal
predicate logics.

Subproblem

Find a cut-free system for predicate logic, which does not prove
∀xA→ A[x := y].

Question

Can we get it in the same way we just got the Hilbert-system?

How to weaken this system?

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ,∀xA

Γ,A[x := u]
∃ −−−−−−−−−−−−−

Γ,∃xA

How to weaken this system?

Γ, a, ā
Γ,A Γ,B

∧ −−−−−−−−−−−−
Γ,A ∧ B

Γ,A,B
∨ −−−−−−−−−
Γ,A ∨ B

Γ,A,A
ctr −−−−−−−

Γ,A

Γ,A[x := u]
∀ −−−−−−−−−−−−− u not free

in conclusionΓ,∀xA

Γ,A[x := u]
∃ −−−−−−−−−−−−−

Γ,∃xA

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

Nested Sequents

Solution
Extend sequents by structural connective for ∀x , denoted ∀x [].

Idea
∀x [] is for ∀x what “,” is for ∨.

Example

A, B ∨ C , ∀x [A, B], ∀y [∀z [∃xE , ∀yF , G]]

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System

Γ{a, ā}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{A,B}
∨ −−−−−−−−−−−
Γ{A ∨ B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}

Γ{∀x [A]}
∀ −−−−−−−−−−

Γ{∀xA}

∀x [Γ{∆}]
scp −−−−−−−−−−− where x does not

occur in Γ{ }Γ{∀x [∆]}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

Γ{∀x [A]}
∃2 −−−−−−−−−−

Γ{∃xA}

A Nested Sequent System for Predicate Logic

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• subsystem without ∃2 captures possibly-empty domains

• has the ”free variable property”

A Nested Sequent System for Predicate Logic

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• subsystem without ∃2 captures possibly-empty domains

• has the ”free variable property”

A Nested Sequent System for Predicate Logic

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• subsystem without ∃2 captures possibly-empty domains

• has the ”free variable property”

A Nested Sequent System for Predicate Logic

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• subsystem without ∃2 captures possibly-empty domains

• has the ”free variable property”

A Nested Sequent System for Predicate Logic

• sound for varying domains
0 ∀xA→ A[x := y]

• complete for sentences of predicate logic
`∀y(∀xA→ A[x := y])

• has syntactic cut-elimination

• subsystem without ∃2 captures possibly-empty domains

• has the ”free variable property”

A Nested Sequent System for Modal Predicate Logic

Varying Domains

Γ{∀x [Λ{∆}]}
scp −−−−−−−−−−−−−−− where x does not occur

in the local context Λ{}Γ{Λ{∀x [∆]}}

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{}

locally binds yΓ{∃xA}

Γ{2[A]}
2 −−−−−−−−−

Γ{2A}

Γ{2[A,∆]}
3 −−−−−−−−−−−−−−−
Γ{3A,2[∆]}

Barcan and Converse Barcan Rule

Γ{∀x [Λ{∆}]}
ba −−−−−−−−−−−−−−− where x does not

occur in Λ{}Γ{Λ{∀x [∆]}}

Γ{A[x := y]}
cba −−−−−−−−−−−−−−− where Γ{}

binds yΓ{∃xA}

	Proof Theory and Why it is Interesting
	Modal Predicate Logic and its Lack of Proof Systems
	A Nested Sequent System for Modal Predicate Logic

